Microfiltración en restauraciones coronarias completas libres de metal

AUTORES:
OD. FERNÁNDEZ, Alejandro Luis
Profesor Titular Biomateriales Dentales de la Facultad de Odontología de la UNCuyo.
OD. DONNA FABRE, María Gabriela
JTP Biomateriales Dentales Facultad de Odontología de la UNCuyo.
OD. PLATERO BIANCHI, Carlos Alberto
JTP Biomateriales Dentales Facultad de Odontología de la UNCuyo.

LUGAR DE TRABAJO:
Cátedra de Biomateriales Dentales Facultad de Odontología UNCuyo.

DOMICILIO POSTAL:
Facultad de Odontología - Ciudad Universitaria s/n, Parque Gral. San Martín - Mendoza (CP 5500)
Email: alejandrofabi01@gmail.com
materiales@fodonto.uncu.edu.ar

RESUMEN
En el presente trabajo se estudió la microfiltración de núcleos de alúmina cementados con cemento de resina autoalcondicionante y con cemento de ionómero de vidrio convencional. Una vez preparadas las muestras se sumergieron en azúl de metileno, para luego ser cortadas longitudinalmente. Los cortes fueron observados en una lupa estereoscópica, estableciéndose su grado de filtración por penetración del colorante. El análisis estadístico demostró que las muestras cementadas con cemento de resina tuvieron menor filtración que las cementadas con ionómero de vidrio.

PALABRAS CLAVES:
Microfiltración – Porcelana dental - Alúmina

INTRODUCCIÓN
Unos de los problemas más frecuentes en el empleo de restauraciones cerámicas totales o parciales, es qué cemento utilizar a la hora de fijarla a la estructura dentaria remanente para que ella permanezca en boca inalterable y sin filtración marginal el mayor tiempo posible. Este problema es variable, dependiendo del tipo de porcelana empleado para confeccionar la restauración, ya que son diversos los materiales cerámicos que pueden emplearse para este fin.1

El desarrollo de los materiales cerámicos para restauraciones rígidas ha evolucionado muy rápidamente desde que Mc Lean2 desarrolló las primeras porcelanas aluminícas. A partir de ese momento se diversificaron tales materiales, los que podemos agrupar en dos grandes categorías: porcelanas feldespáticas (matriz vitrea con cristales dispersos) y porcelanas cristalinas (matriz cristalina con vidrio disperso)3-5. Dentro de esta última categoría se incluyen las porcelanas con cristales de disilicato de litio, alúmina, circónia o alguna combinación entre éstos tres. (Ver cuadro 1).

Con las porcelanas cristalinas se mejoraron sensiblemente las propiedades
mecánicas de estos materiales, pero disminuyeron las propiedades ópticas (por eso deben ser recubiertas con una porcelana feldespática) y las posibilidades de lograr fuerzas de adhesión semejantes a las obtenidas con las porcelanas feldespa-táticas cuando son utilizados cementos cuya composición se basa en resinas reforzadas.\(^1\)

Por otra parte, la superficie interna de la restauración cerámica debe ser susceptible a tratamientos de superficie con el objeto de promover retenciones para que los agentes resinosos se adhieran a la cerámica micromecánicamente y tenga un comportamiento mecánico similar al que se obtiene sobre la estructura denta-ría.\(^2\)

Para la cementación de restauraciones rígidas de porcelana feldespática se indica el acondicionamiento previo de la superficie interna del bloque restaurador, con ácido fluorhídrico y/o con microarenado con partículas de alúmina de 25 a 50 μm a 80 libras de presión, además del empleo de sustancias químicas como el silano, un monómero compuesto de radicales orgánicos reactivos y grupos monovalentes hidrolizables, que propicia la unión química entre la fase inorgánica de cerámica y la fase orgánica del material resinoso aplicado sobre la superficie de la cerámica acondicionada.\(^{5,6,7,8}\) Los dos primeros procedimientos no se indican en las porcelanas con alúmina o con circonia, debido a que no producen efectos considerables sobre estas superficies.\(^{9,10,11}\)

Para mejorar las posibilidades de adhesión con restauraciones de elevado contenido de cristales de alúmina y/o circonia, se ha propuesto una combinación de tratamientos empleando adheresivos con grupos fosfatos (Panavia Ex) con sistema Rocatec.\(^7\) Otra propuesta fue la sialización en combinación con el sistema Rocatec y cemento resinoso.\(^8\) En la actualidad 3M está utilizando un sistema llamado Cojet para el acondicionamiento alúmina y/o circonia que consiste en la silicatización de la superficie con particuladas de óxido de aluminio revestidas con silice, que al impactar sobre la superficie cerámica a 80 libras de presión le dejaría una cubierta de silice y de esa forma mejoraría la adhesión con sistemas resinosos (figuras 1, 2, 3 y 4). La mayoría de las veces estos sistemas no son suficientes, a pesar del desarrollo de los nuevos cementos autoadhesivos, cuyo desempeño es prometedor pero aún requieren mucho tiempo de control clínico.

Por ello, una de las posibilidades para mejorar este inconveniente es utilizar un cemento como el ionómero de vidrio, que se contraindica en las restauraciones con porcelana feldespática, ya que algunos estudios han mostrado que estos cementos (sobre todo si son modificados con resina), aumentan el riesgo de fractura de la restauración debido a la alta expansión higrosópica que experimentan.\(^{11}\) A pesar de ello, este material puede presentar ciertas ventajas cementando las porcelanas con gran cantidad de alúmina y/o circonia: liberación de flúor y adhesión específica a la estructura dentaria, con posibilidades de lograr una buena traba mecánica en restauraciones cerámicas con gran cantidad de cristales.

Por todo lo expuesto, se desarrolló el presente trabajo que tuvo por objetivo

Cuadro 1: Se representan los distintos tipos de cerámica con aplicaciones odontológicas con algunos ejemplos comerciales.

<table>
<thead>
<tr>
<th>TIPO DE MATERIAL CERÁMICO</th>
<th>MARCA COMERCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcelana feldespática</td>
<td>Vitapan clásico, Noritake, Vita VM7, Vita VM9,</td>
</tr>
<tr>
<td></td>
<td>Vitablocs Mark II</td>
</tr>
<tr>
<td>Porcelana feldespática con cristales de leucita</td>
<td>IPS Empress, Finesse, Eris, Vita Press</td>
</tr>
<tr>
<td>Porcelana con cristales de disilicato de litio</td>
<td>IPS Empress II; E-Max</td>
</tr>
<tr>
<td>Alúmina infiltrada</td>
<td>Inceram Alúmina; Turceram, Ángelus Alúmina</td>
</tr>
<tr>
<td>Alúmina CAD-CAM</td>
<td>Procera Alúmina</td>
</tr>
<tr>
<td>Circonia y alúmina infiltrada</td>
<td>Inceram Circonia</td>
</tr>
<tr>
<td>Circonia CAD - CAM</td>
<td>Procera Circonia, LAVA</td>
</tr>
</tbody>
</table>
evaluar el sellado marginal obtenido con cementos de resinas y cementos de ionómero vítreo, al utilizarlos como medio cementante de núcleos de alúmina en elementos dentarios recientemente extraídos y preparados para tal fin.

Materiales y métodos

Mediante un ensayo de microfiltración marginal, se evaluó el sellado obtenido en restauraciones coronarias periféricas empleando como medio de unión de esta con el tejido calcificado del diente los siguientes materiales: cemento de ionómero vítreo convencional para cementados (Ketac Cem, 3M-Espe) y cemento de resina autoadhesivo (U-100, 3M-Espe), los que fueron utilizados según las indicaciones del fabricante para cementar casquetes de porcelana aluminica (InCeram, Vita Mfg).

Se seleccionaron 20 premolares recientemente extraídos por razones ortodónticas y conservados en solución de Cloramina T al 0,5%. Después de proceder al tallado de una preparación periférica estandarizada y controlada con piedra troncocónica ISO 198 de DIALOM, a súper alta velocidad con turbina KAVO de triple spray, teniendo en cuenta las siguientes medidas: hombro redondeado de 1,5 mm de profundidad, correspondiente al extremo de la piedra; altura de la cúspide vestíbular, 6 mm; altura de la cúspide lingual, 5 mm; altura desde el hombro al ángulo diedro que une ambas cúspides, 4 mm; espesor del muñón, 3,5 mm en sentido vestibulo lingual. Los márgenes de la preparación se ubicaron en esmalte. Posteriormente, los dientes se incluyeron en yeso piedra de modo que se obtuvo un tacho que facilitó la torne de impresiones con siliconas de polimerización por adición masilla (Express STD, 3M-Espe) y liviana (Imprint II, 3M-Espe). Se confeccionaron modelos de trabajo con yeso tipo 4 (densidad de alta resistencia y baja expansión, Whip-Mix) sobre los que se fabricaron los casquetes o núcleos de porcelana aluminica con el protocolo recomendado por el fabricante (In-Ceram Aluminia de Vita).14

Habiendo mantenido los dientes en saliva artificial a 37°C (Solución oral NAF, laboratorio Naf) durante el tiempo en que se confeccionaron los casquetes cerámicos (30 días), se probaron y adaptaron los núcleos en los respectivos dientes, y fueron cementados diez dientes con ionómero de vidrio Ketac Cem de 3M-Espe (grupo 1), y diez dientes con cemento de resina Relix U-100, de 3M-Espe (grupo 2) de modo de constituir dos grupos de estudio de diez probetas cada uno en forma aleatoria. En todos los casos se siguieron las instrucciones del fabricante y además en el grupo 2 se acondicionó la superficie interna del núcleo cerámico con un silano.

Las muestras fueron conservadas durante 60 días en saliva artificial (Solución oral NAF) a 37°C, la cual fue renovada diariamente; transcurrido dicho lapso, las mismas se sumergieron en una solución de azúl de metileno al 10% durante 72 horas. Posteriormente se incluyeron en resina acrílica para facilitar el corte longitudinal de ellas en sentido mesio-distal con disco de diamante y
reconstrucción. De esta forma se obtuvieron dos mitades de cada elemento dentario, que fueron observadas en una lupa estereoscópica de 40 aumentos para determinar la microfiltración por la penetración del colorante en las interfases porcelana/cemento y cemento/tejido dentario, en las paredes vestibular y lingual, según la siguiente escala:

Grado 0: sin filtración.
Grado 1: filtración hasta el primer tercio de la preparación.
Grado 2: filtración hasta el segundo tercio de la preparación.
Grado 3: filtración en toda la pared.

Las muestras fueron observadas por un evaluador independiente, previamente calibrado, que identificó a las muestras con un número sin saber el tratamiento realizado.

Los resultados obtenidos fueron evaluados estadísticamente mediante la prueba estadística de análisis de la varianza (ANOVA).

RESULTADOS

Los resultados obtenidos de las observaciones realizadas según lo descripto anteriormente, se muestran en el cuadro 2.

Las muestras numeradas del 1 al 10 pertenecieron a las cementadas con ionómero de vidrio (grupo 1), mientras que las restantes fueron tratadas con cemento de resina (grupo 2).

Algunas de las muestras analizadas pueden observarse en las figuras 5, 6, 7, 8, 9 y 10.

De esta forma podemos decir que existen diferencias estadísticamente significativas entre los grupos 1 y 2 (p>0,05), de manera que las muestras cementadas con resina mostraron menor filtración marginal que las cementadas con ionómero de vidrio.

Se pudo observar, además, que en las muestras cementadas con cemento resinoso hubo menor filtración en la interfase porcelana/cemento.

DISCUSIÓN

Si bien una de las características de las restauraciones rígidas debe ser su adaptación marginal, los materiales cerámicos libres de metal distan mucho de la adaptación que ofrecen las restauraciones que emplean aleaciones de base oro como material para la confección del casquete o núcleo. Por este motivo, el procedimiento de cementación y el material empleado para ello resultan claves para un control adecuado del sellado marginal.

De acuerdo a Pagani y col. tanto el cemento de ionómero de vidrio como el cemento resinoso, tienen ventajas y desventajas. El ionómero tiene buena resistencia a la compresión, tiempo de trabajo adecuado, adhesión específica a esmalte y dentina, biocompatibilidad, liberación de flúor y buena durabilidad pero posee baja resistencia a la tracción y es muy sensible a la contaminación inicial con humedad. El cemento de resina, en cambio,
Microfiltración en restauraciones coronarias completas libres de metal
Od. Fernández, Alejandro Luis; Od. Donna Fabre, María Gabriela; Od. Platero Bianchi, Carlos Alberto

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Porcelana/cemento Vestibular</th>
<th>Cemento/diente Vestibular</th>
<th>Porcelana/cemento Lingual</th>
<th>Cemento/diente Lingual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1bis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2bis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3bis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4bis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5bis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6bis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7bis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8bis</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9bis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10bis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11bis</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12bis</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13bis</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14bis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15bis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16bis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17bis</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18bis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>19bis</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20bis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Cuadro 2. Grado de filtración según escala determinada previamente en las distintas interfases. Notese que al analizar dos paredes de cada muestra, cada grupo quedó confeccionado con n=20; por ello se identifica con un número una pared de la muestra y con el número seguido de la palabra bis la otra pared.

Presenta buena resistencia a la compresión y a la tracción, es insoluble en agua, puede aumentar la resistencia de la restauración cerámica y refuerza el remanente dental, presentando como mayor desventaja la contracción de polimerización. Sin embargo es muy difícil encontrar bibliografía sobre las ventajas de uno sobre otro en lo que a filtración marginal se refiere en el cementado de restauraciones cerámicas libres de metal. En la mayoría de los trabajos publica-
Microfiltración en restauraciones coronarias completas libres de metal
Od. Fernández, Alejandro Luis; Od. Donna Fabre, María Gabriela; Od. Platero Bianchi, Carlos Alberto

Figura 5. Corresponde a la muestra 3 con grado de filtración 3 en ambas interfaces y ambas paredes. Cemento de ionómero de vidrio.

Figura 6. Muestra 5 tratada con ionómero de vidrio en la cual se observa muy poca filtración (grado 1).

Figura 7. Muestra 8 con filtración de grado 2 en una de sus paredes, en la interfase cemento/diente. Cementada con ionómero de vidrio.

dos sobre filtración marginal, sólo se emplean cementos a base de resina para la fijación de restauraciones rígidas de porcelana pura, tal es el caso de los trabajos de Toman et al \(^{17}\), Schenke et al \(^{18}\) y Osório et al \(^{19}\).

Sólo Albert y El-Mowafy \(^{20}\) estudiaron la microfiltración, empleando para la fijación de las restauraciones coronarias cemento de ionómero de vidrio además de resinas, encontrando resultados semejantes a los obtenidos en este trabajo.

El dato más interesante es la menor filtración empleando un cemento autoacondicionante y autoadhesivo como el

Figura 10. Se observa la muestra 19 tratada con cemento de resina, en donde se puede notar mayor filtración en la interfase cemento/diente que en la porcelana/cemento.

Figura 11. Se evidencia la diferencia en la varianza entre ambos grupos
Microfiltración en restauraciones coronarias completas libres de metal
Od. Fernández, Alejandro Luis; Od. donna Fabre, Maria Gabriela; Od. Platero Bianchi, Carlos Alberto

Cuadro 3. Resumen de los datos obtenidos de las muestras evaluadas.

<table>
<thead>
<tr>
<th>Varianza Grupo 1 = 0</th>
<th>Varianza grupo 2 = 1,06186709</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de la muestra grupo 1: 20</td>
<td>Tamaño de la muestra grupo 2: 20</td>
</tr>
<tr>
<td>Grados de libertad grupo 1: 19</td>
<td>Grados de libertad grupo 2: 19</td>
</tr>
<tr>
<td>Valor de F = 0</td>
<td></td>
</tr>
<tr>
<td>Probabilidad: >0.05</td>
<td></td>
</tr>
</tbody>
</table>

U100 (3M) en la interfase porcelana / cemento, ya que es un punto débil en la adhesión de las porcelanas reforzadas con óxidos.

CONCLUSIONES
De acuerdo a los resultados obtenidos en este trabajo, se concluye que sería conveniente seguir estudiando las superficies de adhesión (cerámica y dentina), los materiales empleados y los procedimientos acondicionadores para lograr un mejor comportamiento de los materiales en un medio agresivo como lo es la cavidad bucal, sobre todo en lo referente al sellado marginal.
Los resultados obtenidos nos estimulan para profundizar nuestros estudios investigando sobre el tema, analizando todas las interfasas intervenientes (cerámica – cemento y cemento – dentina).

BIBLIOGRAFÍA

11) BORGES G. A. ET. AL (2003): Effect of etching and airbor-