“RELACIONES ENTRE CAVITACIÓN Y CIERRE ESTOMÁTICO EN VIDAS SOMETIDAS A DÉFICIT HÍDRICO.”

ING. AGR. INÉS PILAR HUGALDE

Tesis presentada para optar al grado de
MAGISTER SCIENTAE

UNIVERSIDAD NACIONAL DE CUYO
FACULTAD DE CIENCIAS AGRARIAS
MAESTRÍA EN VITICULTURA Y ENOLOGÍA

Director de tesis: ING. AGR. MSC. HERNÁN VILA
AGRADECIMIENTOS

Agradezco a Dios por su protección.
Quisiera, además, agradecer al INTA, por permitirme hacer lo que me gusta, investigar.
A mi director de tesis Hernán Vila, por ser mi guía y ayuda permanente a lo largo de este aprendizaje.
Un agradecimiento especial es para mis amigos de Viticultura, Ángel de Biazi, Rodolfo Martos, Dante Gamboa, Marina Di Filippo y Claudia Lucero, que me acompañaron en todo momento.
Quiero agradecer también a Iván Ciklic, Jorge Prieto y Jorge Pérez Peña “PATA” por sus consejos; a mis compañeros del laboratorio Suelos, por tantos análisis; y a Norma Peralisi, nuestra bibliotecaria.
Finalmente quiero agradecer a mi padre y colega, Ernesto Hugalde, de quien heredé el cariño por esta profesión, a mi mamá Inés, y a mi gran amigo y compañero de vida, mi marido Agustín Gandía.
1 Introducción .. 9
 1.1 Estructura y función del xilema: .. 12
 1.2 Hidráulica del transporte xilemático: .. 14
 1.3 Anatomía de la madera: ... 16
 1.4 Disfunción del Xilema, Cavitación o Embolia: .. 18
 1.5 Curvas de vulnerabilidad a cavitation: ... 19
 1.6 Estomas, su fisiología y funcionamiento: ... 24
 1.7 Limitación estomática de la cavitation: .. 27
 1.8 Reparación del xilema caviado: .. 34
2 Objetivos e Hipótesis: ... 36
 2.1 Hipótesis planteadas: .. 36
 2.2 Objetivos: .. 36
3 Materiales y Métodos: .. 38
 3.1 Experimental: .. 38
 3.1 Variables medidas: ... 41
 3.2 Análisis de los datos: ... 45
 3.3 Modelo mecanístico, demostración formal: ... 46
4 Resultados .. 47
 4.1 Respuesta de las plantas al déficit hídrico: .. 47
 4.2 Vulnerabilidad de las plantas a la cavitation: ... 52
 4.3 Embolia en el xilema foliar vs. Relaciones hídricas, a lo largo del día: 54
 4.4 Explicación de un posible mecanismo limitador de la embolia xilemática foliar: 56
 4.5 Modelo mecanístico: .. 58
 4.6 Embolia en el xilema de los tallos vs. Relaciones hídricas, a lo largo del día: 66
5 Discusión: .. 68
6 Conclusiones .. 74
7 Principales aportes del trabajo: .. 75
8 Futuras líneas de investigación que emergen de este trabajo: .. 76
9 Bibliografía: ... 77
10 Anexos .. 86
 10.1 Anexo I: Ajustes de las Curvas de cavitation de cada planta. 86
 10.2 Anexo II: 24 casos de Emb% vs potencial hídrico foliar (Ψ_L): 91
 10.3 Anexo III: Relaciones entre Emb%; g, y k_L .. 94
 10.4 Anexo IV: Relaciones entre E vs. k_L y entre E/k_L vs. Emb%: 100
 10.5 Anexo V: Relación entre Δg, y Emb% ... 106
Figura 1: Porción de tejido xilemático mostrando vasos conductores y vasos embolizados, no conductores. Esquema adaptado de Taiz y Zeiger, 2002 (izq); Fotografía, laboratorio de Viticultura, INTA, EEA Mendoza (der). ... 13
Figura 2: Cámara de cavitation y método de inyección de aire desde la pared lateral del tallo. .. 20
Figura 3: típica curva de cavitation de un tallo leñoso (ΔK/Δh %: pérdida porcentual de conductividad hidráulica). ... 21
Figura 4: curvas de vulnerabilidad a cavitation de diferentes especies. Notar la diferencia en las pendientes de las curvas de una especie más vulnerable y una menos vulnerable a cavitarse. C- Ceanothus megacarpus; J- Juniperus virginiana; R- Rizophora mangle; A- Acer saccharum; V- Vitis vinifera; P- Populus deltoides. (Graficado a partir de Tyree y Zimmermann, 2002; Alsina et al., 2007). .. 23
Figura 5: Micrografía electrónica de barrido de un estoma de Vicea sp. (Fuente Dennis Kunkel Microscopy, http://www.denniskunkel.com/). ... 26
Figura 6: relación entre g, y kH en Grenache (isohídrica) y Syrah (anisohídricas). (fuente Schultz, 2003). .. 33
Figura 7: fotografía del ensayo experimental en invernáculo con las plantas en maceta. 40
Figura 8: cámara de cavitation. ... 42
Figura 9: equipo para medir la presión del gas que se aplica transversalmente....................... 43
Figura 10: Tres tipos de curvas de cavitation. El tipo de curva depende de la especie............ 43
Figura 11: Curva de capacidad hídrica del sustrato utilizado en el ensayo. 44
Figura 12: marcha diaria del potencial hídrico foliar (ΨL; MPa) de las variedades Chardonnay, Malbec, Syrah y Grenache. (DH: —□—; CC: —●—)Valores promedios (n=3). Las barras indican el error estándar. ... 48
Figura 13: gráfico de interacción entre variedad y tratamiento hídrico para la variable potencial máximo alcanzado (Ψmat). Las barras indican el intervalo de confianza para 95%. 49
Figura 14: marcha diaria de la conductancia estomática (gs) de la variedad Chardonnay, Malbec, Syrah y Grenache. Valores promedios de CC (●) y DH (□); n=3. Las barras indican los errores estándares. .. 51
Figura 15: interacción entre variedad y tratamiento hídrico para la conductancia 52
Figura 16: Curvas de vulnerabilidad del xilema a cavitarse, promedio para cada tratamiento resultantes del ajuste del modelo de regresión y=a*(exp (b*x)-exp(c*x)). (R² > 80% en todos los casos). .. 53
Figura 17: Marcha diaria de las variables potencial hídrico foliar (ΨL) y embolia (Emb %). Valores promedios de Grenache, Syrah, Chardonnay y Malbec. ΨL de CC (—□—)ΨL de DH (— ■—); Emb% CC (—•—) y Emb% DH (—○—). Las barras indican los errores estándares. 55
Figura 18: Marchas diarias de la conductancia estomática g, CC (◊) y DH (●) y de la embolia foliar Emb % CC (—○—) y DH (—■—). Valores promedios DE Chardonnay, Grenache, Malbec y Syrah para los tratamientos de riego CC y DH. Las barras indican el error estándar. 56
Figura 19: Marcha diaria de conductancia hídrica específica kL, CC (◊), DH (●) y la embolia Emb% CC (□) y DH (■). Valores promedios. Las barras indican los errores estándares. .. 57
Figura 20: Marchas de g, en plantas no estresadas (CC) y con g, disminuida a la mitad (A) utilizando el modelo; y marchas de la embolia (Emb%) para ambos casos (B). 60
Figura 21: Marchas de kL en plantas no estresadas (CC) y con kL duplicada (A) utilizando el modelo; y marchas de la embolia (Emb%) para ambos casos (B). 60
Figura 22: Marcha del Emb% para plantas no estresadas (CC) y para plantas con g, disminuida en un 50% y kL duplicada, utilizando el modelo. 61
Figura 23: A: Relación entre la transpiración E (■) y la conductividad hídrica kL (□)...... 62
Figura 24: Relación entre g_s y k_L para todos los tratamientos y todas las repeticiones. 62

Figura 25: Marcha diaria del Emb% (◊) y de Δg_s (●) para el promedio de las plantas CC (A), y para el promedio de las plantas DH (B). Observar que a las 11:00 h, cuando se estabiliza el Emb%, ocurren picos de Δg_s ... 63

Figura 26: A- Marchas diarias y Δg_s (●) y de la tasa de cambio de $e_{s_{TL}}$/Pa (□). Se puede notar la similitud en las marchas de las curvas. Promedio de las plantas Chardonnay CC............ 65

Figura 27: Marcha diaria de Δg_s (—●—) y $\Delta e_{s_{TL}}$/Pa (—□—), para una planta Syrah DH. 65

Figura 28: Marchas diarias del Emb% de hoja (●), Emb% de tallo (□), Ψ_L (▲) y Ψ_S (△). Promedio de plantas CC (A) y promedio de plantas DH (B). ... 66

INDICE DE TABLAS
Tabla 1: listado de algunas variedades de vid y su categorización en isohídricas o anisohídricas en función de la respuesta del potencial hídrico a estrés hídrico, cultivadas a campo (C) o en maceta (M). (Chaves et al., 2010). Observar que según las condiciones una misma variedad puede responder como isohídrica o anisohídrica.

Tabla 2: potencial hídrico foliar de medio día (Ψ_{md}) y conductancia estomática máxima (g_{s máx.}) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos a capacidad de campo (CC) y con déficit hídrico (DH). Letras distintas indican diferencias significativas para la prueba de Tukey, p<0.05.

Tabla 3: potencial de preamancear (Ψ_{pd}, MPa) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos a capacidad de campo (CC) y con déficit hídrico (DH). Letras distintas indican diferencias significativas para la prueba de Tukey, p<0.05.

Tabla 4: Parámetros de ajuste de las curvas de vulnerabilidad a la cavitación (Δk_{H vs. Ψ}) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (CC) y en condiciones de déficit hídrico (DH).

Tabla 5: Potencial hídrico a 50% de cavitación (Ψ_{50}) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (CC) y en condiciones de déficit hídrico (DH).

Tabla 6: Porcentaje de embolia en preamanecer en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (CC) y en condiciones de déficit hídrico (DH).

Tabla 7: Porcentaje de embolia máxima alcanzada en el día en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (T) y en condiciones de déficit hídrico (DH).

Tabla 8: análisis de χ^2 de la coincidencia de picos de g_s y mesetas de Emb%, analizados en las curvas de marchas diarias de ambas variables. Nº de picos = 49. Nº de grados de libertad n-1 = 2-1=1 (se realiza corrección de Yates).

Tabla 9: Conductancia hidráulica específica máxima (k_{L max}), en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (T) y en condiciones de déficit hídrico (DH). Letras distintas indican diferencias significativas para el test de Tukey, p<0.05.

Tabla 10: análisis de χ^2 de la coincidencia de picos de Δg_s y mesetas de Emb%, analizados en las curvas de marchas diarias de ambas variables. Nº de picos de Δg_s = 57. Nº de grados de libertad n-1 = 2-1=1 (se realiza corrección de Yates).

Tabla 11: Correlaciones entre Δg_s y variables ambientales para todos los tratamientos y todas las repeticiones.

Tabla 12: Ecuaciones de ajuste lineal entre Ψ_{L} y Ψ_{S} para las diferentes horas a lo largo del día.
Resumen

La cavitation es una disfunción fisiológica que ocurre en el xilema de las plantas cuando estas están bajo déficit hídrico, y que entraña una pérdida de su conductancia hidráulica (k_L), cuando algunos vasos se llenan de aire. Esto incide negativamente sobre la oferta de agua y afecta el potencial hídrico foliar (Ψ_L) y la hidratación de la canopia.

El cierre estomático es una respuesta efectiva ante la disminución del contenido hídrico. Dependiendo de la especie vegetal, los estomas suelen cerrarse para evitar la cavitation catastrófica. Una planta poco vulnerable a cavitar puede mantenerlos abiertos por más tiempo y por lo tanto seguir fotosintetizando. Por el contrario, plantas vulnerables a la cavitation deben cerrar sus estomas con anterioridad para poder evitar cavitations graves.

En este trabajo se estudió, el ajuste estomático como mecanismo para evitar la cavitation en cuatro variedades contrastantes de vid (Grenache, Syrah, Malbec y Chardonnay). Se hipotetizó que las vides sometidas a déficit hídrico disminuyen g_s para evitar sufrir cavitations catastróficas y que algunas variedades de vid, cuando crecen bajo restricción hídrica, se aclimatan mejor desarrollando un ajuste estomático más preciso, ó un sistema conductor menos vulnerable a cavitar, o ambas.

Se diseñó un experimento aleatorizado en invernáculo donde se probaron dos situaciones hídricas edáficas (100% y 50% de FTSW). Luego de dos meses, se midieron, a lo largo del día, las variables g_s, transpiración y potencial hídrico. Luego se construyeron las curvas de cavitation y se calculó la conductancia hidráulica de la planta (k_L) y el embolismo a lo largo del día. Finalmente se obtuvo la relación entre g_s, k_L y el embolismo.

Mediante un modelo mecanístico, que se construyó teniendo en cuenta los flujos de agua y vapor, las k_L y g_s, y la vulnerabilidad del xilema a cavitar, se probó que g_s no es la única variable responsable de frenar la embolia. Se determinó que g_s y k_L están íntimamente asociadas y que este acople entre ambas conductancias es lo que frena la embolia. Se concluyó que, en la vid y bajo niveles de estrés hídrico moderado, no es necesario un cierre estomático para controlar la cavitation, sino una disminución de la diferencia entre g_s y k_L (Δg_s). Por esto, el mecanismo de control de la cavitation en la vid no conlleva un costo en términos de intercambio gaseoso.

También se descubrió que bajo niveles moderados de déficit hídrico la vulnerabilidad xilemática no aumenta con respecto a las plantas que no sufren déficit, sin importar de qué variedad se trate.
Abstract

Cavitation is a physiological dysfunction that takes place in the xylem of plants under water stress. It leads to a loss of hydraulic conductance as the vessels are filled with air. This has a negative impact on water supply and affects \(\Psi_L \) and canopy hydration. Stomatal closure is an effective response upon diminishing momentary or seasonal foliar hydraulic contents. Depending on each type of plant, stomata may close preventing catastrophic cavitations. A not vulnerable to cavitation plant may maintain higher stomatal conductances (\(g_s \)) and therefore greater photosynthesis, by keeping opened stomata for longer periods of time. On the other hand, vulnerable plants should close their stomata in order to prevent runaway embolism and lost of hydraulic conductance. This research intended to understand how stomatal control acts upon cavitation events in four contrasting grapevine varieties (Grenache, Syral, Malbec and Chardonnay). We hypothesized that water stressed grapevines, reduce \(g_s \) in order to avoid catastrophic embolism, and that some varieties, when grown under water stress, may acclimatize themselves by the development of a precise stomatal control, or a less vulnerable xylem, or both.

A randomized experimental plot inside a greenhouse was conducted (two FTSW treatments were determined, 100% and 50%). Quantitative measurements of \(g_s \), transpiration, photosynthesis and stem water potential were assessed from predawn to 4 pm, every one our. Two months later, cavitation curves were constructed, and the level of embolism reached along the day and plant hydraulic conductance, were calculated. Finally the relationship among \(g_s \), \(k_L \) and embolism was determined.

By means of a mechanistical model that was constructed based on the water and vapour fluxes, \(k_L \), \(g_s \), and the vulnerability to cavitation of the xylematic tissue, we probed that \(g_s \) is not the only variable that controls cavitation. It was determined that \(g_s \) is coupled with \(k_L \), and this coupling is the responsible mechanism that achieves embolism control. This leaded us to conclude that grapevines under mild water stress, do not need to close their stomata in order to avoid cavitation. They only need a midmorning decrease in the difference between \(g_s \) and \(k_L (\Delta g_s) \), therefore, no cost in terms of carbon assimilation is required.
1 Introducción

El agua es el recurso más importante para la vida en el planeta. Los vegetales necesitan del agua para crecer y desarrollarse, ya que requieren consumir agua para realizar la fotosíntesis. Además, el agua constituye entre el 50 y el 90% de su peso fresco, según el tipo de planta (Martínez de Toda, 1991). El grado de resistencia al estrés hídrico, es determinante del tipo de cultivo que puede crecer y desarrollarse en un determinado lugar, entendiéndose que una planta está bajo estrés hídrico cuando el contenido hídrico de sus células o tejidos se encuentra por debajo del máximo de hidratación (Taiz y Zeiger, 2002). En el mundo, la agricultura se ha extendido a gran diversidad de condiciones agroecológicas, desde zonas húmedas, sin déficit hídrico; hasta zonas áridas, en las cuales la falta de agua es común y donde es necesario complementar el agua de lluvia con riegos. En estas condiciones, los cultivos que mejor se desarrollan son aquellos que pueden convivir con algún grado de déficit hídrico. Este tipo de cultivos, entre los que se encuentra la vid, soportan grandes demandas atmosféricas de humedad, suelos secos, alta irradiancia y temperaturas por sobre el límite óptimo de 30 ºC (Lovisolo et al., 2002; Chaves et al., 2010).

La vid es una liana que, en estado salvaje, crece en bosques templados, trepando sobre árboles de 20 o 30 m, para alcanzar la luz. Esta adaptación está ligada a la posibilidad de elevar el agua varias decenas de metros por encima del suelo (Scholander et al., 1957). El ascenso del agua, desde el suelo y hasta semejantes alturas, se explica por la teoría cohesiva tensiva (Dixon, 1914). Según esta teoría las plantas permanentemente absorbed agua del suelo y la pierden hacia la atmósfera a través de las hojas, por transpiración (E). La transpiración o evaporación de agua de la hoja hacia la atmósfera, es la responsable de crear un gradiente de potencial hídrico entre la hoja y el suelo. Este gradiente se manifiesta como una tensión o presión negativa que absorbe el agua a través de los vasos capilares del xilema. Las venas líquidas se mantienen por cohesión entre moléculas de agua y adhesión entre el agua y la pared de los vasos, permitiendo que el flujo avance desde las raíces hasta las hojas (Tyree y Zimmermann, 2002; Salisbury y Ross, 2000, Martínez de Toda, 1991). Este mecanismo es tan eficiente que permite que el agua suba hasta la canopia en algunos forestales que miden más de 100 m de altura. En estas plantas se ha podido medir hasta -10 MPa de potencial hídrico foliar (Ψ_f) (Tyree, 2003). En otra situación, Pockman et al. (2000) midieron hasta -10 MPa de Ψ_f en Larrea tridentata, planta de pocos de metros de altura, pero que debe succionar agua de suelos muy secos. Si el suelo se encuentra muy seco se produce una caída de potencial hídrico extremadamente grande. Bajo estas condiciones la succión en los vasos del xilema se hace excesiva, causando el fenómeno de “cavitación o embolia”, que es la...
formación de burbujas de aire en los conductos xilemáticos con la consiguiente rotura de la vena líquida (Azcón-Bieto y Talón, 2000; Tyree M., Zimmermann M., 2002). Como consecuencia de esta interrupción del flujo de agua, la planta sufre una pérdida de la conductancia hidráulica (k_H). Esta pérdida de k_H provoca que la parte aérea de la planta reciba menos agua y sufra deshidratación. La deshidratación será más severa cuando la pérdida de k_H sea mayor, por un incremento en el número de vasos cavitados (Schultz y Matthews, 1988, Taiz y Zeiger, 2002).

Debido a la reconocida capacidad de la vid para vivir bajo déficit hídrico, es probable que en ella se hayan desarrollado distintos mecanismos asociados a la adaptación a sequía. Entre estos mecanismos se encuentran el mayor crecimiento de raíces que aumenta la exploración del suelo y permite alcanzar reservorios de agua más profundos; un manejo estomático sensible, que le permite controlar la pérdida de agua (Lovisolo et al., 2002); y un eficiente ajuste osmótico, que ayuda a mantener la turgencia de las células (Patakas et al., 1999 a, Patakas et al., 1999 b; Chaves et al., 2010).

Para percibir el déficit hídrico las plantas tienen variados mecanismos, los cuales, actualmente, se encuentran en estudio y debate. Por un lado, se sabe que en las plantas se producen señales de tipo hormonal, a corta y larga distancia, como la síntesis de ácido abscísico (ABA), la hormona del estrés. Por otro lado, se sabe que no siempre son estas señales químicas las responsables de gatillar una respuesta determinada. Ejemplo de esta situación es la apertura y cierre de los estomas, en la que la combinación de las señales químicas y de las señales físicas o hidráulicas maneja la respuesta del vegetal a la falta de agua (Chaves et al. 2003).

Se cree que la aclimatación a estrés hídrico es un conjunto de mecanismos que interactúan entre sí, para permitir que las plantas modifiquen la entrega de agua a su canopia frente a déficit hídrico. Entre estos mecanismos, se mencionó la apertura y cierre de estomas y el mayor crecimiento de raíces que aumenta la exploración del suelo. También puede ocurrir un menor crecimiento de la superficie foliar, lo cual reduce la superficie transpiratoria; la segmentación o pérdida de parte del área foliar de la planta; el ajuste osmótico, que permite mantener turgencia de los tejidos; el engrosamiento de las capas de cutícula y ceras, que impide la pérdida de agua; y el aumento de la resistencia del xilema a cavitar (Martínez de Toda, 1991; Patakas et al., 1999, Patakas et al., 1999; Taiz y Zeiger, 2002, Lovisolo et al., 2002; Chaves et al., 2010).

\[1\] Conductancia hidráulica es la inversa de la resistencia al flujo en cualquier órgano de la planta. Es la capacidad total de transporte de la planta. Conductividad hidráulica (K_H) es la capacidad de transporte sobre una determinada distancia. (Maseda y Fernández, 2006).
Dentro de los mecanismos mencionados, el control estomático es una respuesta efectiva ante a la disminución del contenido hídrico (Lovisolo et al., 2002; Chavez et al., 2003, Chaves et al., 2010), momentáneo o estacional, en las plantas, y su fisiología se encuentra muy bien estudiada. Varios trabajos muestran que el ajuste estomático limita la cavitación, y que el mecanismo biológico está sujeto a leyes hidráulicas e hidromecánicas (Jones y Southerland 1991; Cochard et al., 2002; Buckley et al. 2003, Chaves et al, 2003; Vilagrosa et al., 2003). Este control estomático se da en varias especies, como el nogal y la vid.

Se sabe que en la mayoría de las plantas, los estomas se cierran, al menos parcialmente, para evitar que la transpiración continúe y el potencial hídrico llegue a valores tales que permitan que se desencadene la embolia progresiva (Sparks y Black, 1998; Turner et al., 1984; Tardeu y Simonneau, 1998, Cochard et al., 2002; Chaves et al., 2003; Vilagrosa et al., 2003; Buckley et al., 2005; Franks et al., 2007; McDowell et al., 2008; Lovisolo et al., 2002, Lovisolo et al., 2010; Chaves et al., 2010).

Otras plantas, como por ejemplo el roble y el pistacho (Vilagrosa et al., 2003), no poseen control de los estomas bajo circunstancias adversas y sufren embolia. Como consecuencia de la embolia o cavitación, pierden parte de su canopia por defoliación, último recurso que, luego de sucedida la cavitación, les permite disminuir la superficie transpirante y de esta manera sobrevivir (Tyree et al., 1993; Tyree M. y Zimmermann M., 2002; Martínez de Toda, 1991; Sperry y Saliendra, 1994).

De acuerdo con el tipo de respuesta estomática, muchas especies de plantas han sido clasificadas por algunos autores como isohídricas o anisohídricas; también llamadas pesimistas u optimistas respectivamente (Turner, Schulze y Gollan, 1984; Tardeu y Simonneau, 1998, Franks et al., 2007). Las plantas isohídricas cierran los estomas cuando perciben un descenso de la humedad del suelo o una gran demanda atmosférica, manteniendo así valores de potenciales hídricos constantes al responder a variaciones de ABA y del propio potencial hídrico foliar (Ψ_L) (Tardieu y Simonneau, 1998). A estas plantas se las llama “pesimistas”, ya que cierran los estomas y sólo los abren nuevamente cuando la condición hídrica vuelve a ser favorable. Por el contrario, plantas anisohídricas siguen transpirando y fotosintetizando aunque el contenido de agua disponible baje, respondiendo solamente al ABA, que aumenta su concentración durante eventos de estrés, y no a la presión parcial de vapor del aire o al Ψ_L (Tardieu y Simonneau, 1998). Estas plantas son llamadas “optimistas” porque en lugar de frenar la pérdida de agua a través del poro estomático, continúan priorizando la fotosíntesis, a expensas de la hidratación. Por no frenar la transpiración, en el caso de que el recurso hídrico no retorne a los niveles necesarios para sobrevivir, pueden llegar a morir, antes que las pesimistas.
En general, la vid es considerada una especie evitadora2 de la sequía, con un control estomático eficiente (Chavez\textit{ et al.} 1987; Higgins\textit{ et al.} 1992; Schultz, 2003, Chaves\textit{ et al.} 2010). Sin embargo hay algunas variedades que han mostrado, en determinados casos, tener un ajuste estomático más eficiente que otras. Es por eso que, dentro de la vid, se intentó clasificar algunas variedades como isohídricas o anisohídricas. En la actualidad, esta clasificación es motivo de controversia, ya que las mismas variedades han mostrado comportamientos opuestos según las condiciones bajo las que fueron estudiadas (Chaves\textit{ et al.} 2010, Lovisolo\textit{ et al.}, 2010).

En este contexto, este trabajo intenta estudiar, en la vid, la relación entre el control estomático, más o menos eficiente en diferentes variedades de vid, y los eventos de cavitación sufridos en la vid, bajo condiciones de estrés hídrico.

Comparando con lo que ocurre en otras especies, algunas capaces de evitar la cavitación por ajuste estomático preciso, y otras opuestas, en que las plantas no son capaces de frenar las embolias; en la vid los estudios son contrapuestos y dejan poco claro la mecánica de este funcionamiento (Chavez\textit{ et al.}, 2010 y Lovisolo\textit{ et al.}, 2010). Es por esto que, en este trabajo se busca entender de una manera más macanística el funcionamiento del estoma, de la cavitación y de las leyes físicas que los rige en variedades contrastantes y cuando se cultivan con y sin déficit hídrico. Con el objeto de presentar el estado del arte en lo relativo a la embolia del xilema y su control por parte del estoma, se presenta una monografía relativa a la estructura y función del xilema, la morfología e hidráulica del transporte xilemático, la fisiología del estoma, su acción en el control de la embolia y los mecanismos de reparación xilemática.

1.1 Estructura y función del xilema:

El transporte de agua desde la raíz, hasta las hojas, a través de la planta, se realiza por el xilema. Este es un tejido especializado en el transporte de agua, y sus células tienen la característica de estar muertas cuando son funcionales, ya que pierden todo el citoplasma, quedando solamente las paredes celulares que forman conductos (Tyree y Zimmermann, 2002). Este tejido constituye el camino preferencial por el que fluye el agua, y se caracteriza por tener una baja resistencia al flujo (Taiz y Zeiger, 2002). En la figura 1 se observa un esquema de la estructura del xilema.

2 Evitación: Mecanismo por el cuál se impide que una célula sufra estrés. (Levitt, 1980).
El xilema tiene 2 tipos de conductos, las traqueidas (células conductoras con los extremos cerrados y sólo interconectadas por poros) y los vasos (formados por células interconectadas con extremos abiertos llamadas elementos de vaso). Los vasos solo se encuentran en las angiospermas, mientras que las traqueidas se encuentran en angiospermas y gimnospermas.

Tanto los vasos como las traqueidas tienen perforaciones laterales, llamadas poros. Los poros son discontinuidades de la pared secundaria del vaso o de la traqueida y donde la pared primaria es fina y porosa (Taiz y Zeiger, 2002). Estas perforaciones permiten la comunicación hidráulica lateral. Morfológicamente, los vasos se asemejan a cañerías, formadas por los elementos de vaso que se disponen unos sobre otros formando largos tubos de conducción.

En las plantas, una traqueida o vaso cavítado puede conservar el flujo de agua gracias a la presencia de los poros, por los cuales se genera un efecto de tipo “by-pass” o caminos alternativos (figura 1). Estos caminos alternativos permiten que el agua que ahora no puede fluir por el elemento cavítado pueda pasar al elemento contiguo y continuar su camino hasta la canopia (Scholander et al., 1957). Esto permite que no se pierda la función de conducción.
sino hasta que un gran número de elementos conductores haya cavitado y este mecanismo ya no sea posible.

Además, en las gimnospermas, los poros evitan que una burbuja dentro de la traqueida embolizada pase a una traqueida vecina. Esto se cumple porque las traqueidas tienen poros conformados por un torus y un margo. El torus y el margo consisten en una modificación de la pared de la traqueida, dentro del poro. El margo es una fina membrana de microfibrillas que continúa desde la pared y que sostiene al torus. El torus es un engrosamiento de la pared ubicado en el centro del poro. Ambas estructuras actúan como una válvula, que se cierra cuando la traqueida cavita y se forma una burbuja de gas en su interior. La función de esta válvula es evitar que la burbuja de gas circule hacia otra traqueida, ya que por la misma presión que ejerce la burbuja, el torus se desplaza hacia el borde más exterior de la pared de la traqueida, sellando el poro (Tyree y Zimmermann, 2002; Taiz y Zeiger, 2002).

En la vid, que es una angiosperma, con mayor proporción de elementos de vaso que de traqueidas, se ha visto que este mecanismo no se cumple, ya que en los vasos no existen ni torus ni margo, sino solamente una membrana del poro. Según la porosidad de esta membrana interna (i.e. intersticios en la membrana del mismo poro) el vaso puede ser más o menos vulnerable a cavitar. Cuando los espacios de membrana de poro son más amplios, mayor es el riesgo. Si el poro es más chico, y la membrana es más gruesa, entonces la resistencia a cavitar aumenta (Tyree y Zimmermann, 2002).

Se ha estudiado que los poros de los vasos de la vid permiten que el aire circule de un vaso a otro a una cierta distancia, a veces considerable, permitiendo que el nivel de embolia aumente. Chatelet et al., (2006) y Thorne et al., (2006), observaron esto al estudiar la dispersión de algunos patógenos a través del xilema de la vid.

1.2 Hidráulica del transporte xilemático:

Los vasos encierran columnas de agua que están bajo tensión ($\Delta \Psi$) a causa del proceso transpiratorio. Este fenómeno se encuentra explicado por la Teoría Coheso Tensiva (Dixon, 1914), que indica que la transpiración crea una diferencia de potencial hídrico ($\Delta \Psi$; Ec.1) que se traduce en una fuerza impulsora que se transmite desde las hojas (donde se evapora agua hacia la atmósfera) a las raíces, y provoca que el agua ingrese desde el suelo a la planta. Este proceso es pasivo y no requiere de energía metabólica de la planta.

Esta fuerza $\Delta \Psi$, normalmente, tiene valores de entre -1 a -2 MPa, llegando, en algunos casos extremos, hasta -10 MPa (Tyree y Sperry, 1989; Tyree, 2003).
El transporte de agua en el xilema es pasivo (*i.e.*, no implica gasto de energía metabólica) y depende del gradiente de potencial hídrico y de la anatomía de los vasos (Taiz y Zeiger, 2002).

El flujo de agua \((J_w) \), de acuerdo a la ley de Van den Honert (1948), análoga a la ley de Ohm, depende directamente de la diferencia de potenciales hídricos entre dos puntos dados \((\Delta \Psi) \), y de la inversa de la resistencia hidráulica entre esos dos puntos \((R) \). Para la planta entera, \(\Delta \Psi \) se considera entre el suelo y la hoja de la planta, y constituye la fuerza impulsora de \(J_w \). La \(R \) es la resistencia total, que incluye las resistencias que, en el trayecto desde el suelo a la hoja, se oponen al flujo.

Generalmente, en vez de \(R \), se usa la conductancia hidráulica \((k_H) \), que es la inversa a \(R \), con lo que la ley de Van den Honert queda como lo indica la Ec.1. A su vez, \(k_H^{-1} \) es igual a la sumatoria de las \(k_{raíz}^{-1} \) + \(k_{xilema}^{-1} \) + \(k_{hoja}^{-1} \).

\[
J_w = \frac{\Delta \Psi}{R} = k_H \cdot \Delta \Psi;
\]

\[
\Delta \Psi = \Psi_{raíz} - \Psi_L
\]

Donde: \(J_w \) es el flujo \((\text{mmol H}_2\text{O m}^2\text{s}^{-1}) \),
\(k_H \) es la conductancia hidráulica \((\text{mmol H}_2\text{O m}^2\text{s}^{-1} \text{MPa}^{-1}) \)
\(\Delta \Psi \) es la diferencia de potenciales hídricos \((\text{MPa}) \),
\(\Psi_{raíz} \) es el potencial hídrico de la raíz \((\text{MPa}) \),
y \(\Psi_L \) es el potencial hídrico de la hoja \((\text{MPa}) \).

Asumiendo que algunas plantas tienen capacitancia\(^3\) interna nula, como ocurre en la vid, \(J_w \) puede igualarse a la transpiración \((E) \), que a su vez por la ley de Fick se expresa como:

\[
E = \frac{(e_L - e_a) / P_a}{(gs^{-1} + gb^{-1})}
\]

\(^3\) Capacitancia hidráulica se define como el almacenamiento de agua en la planta dividido la diferencia de potencial hídrico que extrae esa agua almacenada (Phillips *et al.*, 2003).
Donde: E es la transpiración (mmol H$_2$O m$^{-2}$ s$^{-1}$),

“$(e_L - e_a)/P_a$” es la fuerza impulsora dada por la diferencia de concentraciones de vapor entre la hoja y la atmósfera, (adimensional, dado que es un cociente entre presiones con hPa como unidad). Donde e_L es la presión parcial de vapor en el mesófilo de la hoja, e_a es la presión parcial de vapor en la atmósfera y P_a es la presión atmosférica.

$y (g_s^{-1} + g_o^{-1})$ es la suma de las resistencias estomática y de la capa límite (mmol H$_2$O m$^{-2}$ s$^{-1}$).

J_w también depende de la geometría de los vasos xilemáticos. La Ley de Hagen-Poiseuille (Ec.4) explica que cuando por un capilar pasa un fluido a una cierta presión, el flujo es función de la viscosidad (η), del gradiente de presión hidrostática $\Delta \Psi/\Delta L$, y de la cuarta potencia del radio del capilar (r). (Ec. 4, Taiz y Zeiger, 2002). Esto se aplica directamente a la planta, ya que los vasos del xilema funcionan como capilares.

$$J_w = \frac{\pi \cdot r^4}{8 \cdot \eta} \cdot \frac{\Delta \Psi}{\Delta L}$$ \hspace{1cm} (4)

Donde: J_w es el flujo (mmol H$_2$O m$^{-2}$ s$^{-1}$), η es la viscosidad, $\Delta \Psi/\Delta L$ es el gradiente de presión hidrostática (MPa), r es el radio del capilar (m),

El cociente $\frac{\pi \cdot r^4}{8 \cdot \eta \cdot \Delta L}$ es la conductancia hidráulica k_{xilema}, definida en la Ec.1

Esta ley nos dice que el flujo o caudal de agua es muy sensible a variaciones en el diámetro del vaso. Si el radio se duplica, el flujo aumenta 16 veces (2^4) (Taiz y Zeiger, 2002, Tyree y Zimmermann, 2002). Ejemplo claro de esto es la diferencia de conducción entre vasos de leño de primavera, anchos y de alta eficiencia, comparados con los vasos estrechos de verano, que conducen mucho menos agua pero que son resistentes a altas succiones (Sperry y Tyree, 1990, Woodcock, 1994; Clarquist 2001).

1.3 Anatomía de la madera:

La madera de las plantas leñosas está formada por los vasos y traqueidas conductoras de agua, junto a fibras y células parenquimáticas del xilema. Existen muchos tipos diferentes de madera. La clasificación completa puede estudiarse en el libro de S. Carlquist, (2001) o en la clasificación publicada por el comité de la Asociación Internacional de la Anatomía de las Maderas (IAWA, 1989). Pero dentro de esta extensa clasificación, dos tipos son los más frecuentes: el “Ring-porous” o poroso anillado y el “Diffuse-porous” o poroso difuso.
A la madera que tiene la característica de diferenciar el tipo de leño de verano del de primavera, se la denomina “madera porosa anillada”, (IAWA, 1989). Si se analiza el crecimiento de este tipo de madera durante una estación (primavera-verano), se observa que la madera de primavera es diferente a la madera de verano. Los anillos de crecimiento muestran que el xilema de la primavera tiene vasos anchos, con alta eficiencia de conducción, mientras que la madera de verano tiene mayor número total de vasos, de diámetros estrechos, con menor capacidad para conducir agua, pero más resistentes a cavitar. Sperry y Tyree (1990) demostraron esto conduciendo agua con tintura a través de tallos de conífera que habían crecido con y sin estrés hídrico. Cuando al tallo de conífera que tenía máxima conductancia le hicieron circular agua con tintura, esta tintura pudo teñir toda la madera, ya que pudo circular por todos los vasos del xilema. Cuando se repitió el experimento en el tallo estresado, se pudo ver que los vasos teñidos eran los de menor diámetro- aquellos que no habían cavitado debido al déficit hídrico- mientras que los vasos anchos del leño de primavera no se tiñeron ya que habían cavitado.

Ecológica y funcionalmente, puede explicarse que durante la primavera, cuando las condiciones edafo-climáticas son favorables, las temperaturas son moderadas y no hay restricciones hídricas, la planta desarrolla xilema eficiente en la conducción de agua. Cuando llega el verano, con temperaturas más altas, mayores demandas de agua y suelos más secos, es necesario tener vasos que puedan soportar succiones mayores, como los que tiene la madera de verano (Woodcock, 1994; Carlquist S., 2001).

Con respecto a la madera “difusa”, ésta se encuentra en una situación intermedia entre la “anillada” y la “no anillada” (IAWA 1989). Una madera “no anillada” tendría todos los vasos de tamaño homogéneo. La madera “difusa” es una madera en la que existen diferentes tamaños de vasos con distribución azarosa (Tyree y Zimmermann, 2002). Comparándola con estos tipos de madera, la madera de la vid ha sido clasificada como difusa (Salleo et al., 1984, Sun et al., 2006). Otros estudios indican que la vid tiene semejanza a los árboles de maderas tipo anillada en cuanto al diámetro y al largo de los vasos (Tyree y Zimmermann, 2002). Esto indica que la vid es intermedia con respecto a estas clasificaciones, y que presenta características de uno y otro tipo de madera. La vid, como muchas lianas, se caracteriza por tener vasos muy anchos (entre 40 y 80 µm de radio), con una alta eficiencia de conducción, comparados con otras especies leñosas como Populus deltoides y Olea europaea, que tienen alrededor de 10 µm y 20 µm de radio respectivamente (Lovisolo y Schubert, 1998; Gartner et al., 1990; Ewers et al., 1985; Ewers et al., 1991). La conductividad observada en las lianas estudiadas bajo estrés hídrico, fue de 2,7 a 203*10⁻³ m³ MPa⁻¹ s⁻¹; mientras que para forestales como Capparis, Cordia, Heliocarphus, Ipomoea,
Psidium y Guapira bajo iguales condiciones, resultó de 0,8 a 5,1*10^{-3} \text{ m}^3 \text{MPa}^{-1} \text{s}^{-1} (Gartner et al., 1990). Esta gran eficiencia de conducción va ligada a la vulnerabilidad a cavitar, y a mecanismos de reparación de las embolias (Clarquist, 1985, Tyree y Zimmermann, 2002, Chouzouri y Schultz 2005, Gutiérrez et al., 2009).

1.4 Disfunción del xilema, cavitación o embolia:

Cuando el vaso no resiste la tensión excesiva, ya sea por una demanda de agua muy alta (aire muy seco y temperaturas elevadas) o por una oferta muy baja (suelo seco), se produce el efecto de cavitación o embolia. El mecanismo de formación de la burbuja en plantas, a presiones que tienen mayor probabilidad de ocurrencia en la naturaleza vegetal, fue propuesto en 1983 por Zimmermann (Tyree y Zimmermann, 2002). La hipótesis de la “siembra de aire” explica que la burbuja de aire que ocupa el vaso o traqueida, ingresa del exterior del xilema, por los poros del vaso; y a través de vasos cavitados, a vasos contiguos (Tyree y Zimmermann, 2002). El resultado de esta interrupción del flujo de agua es la pérdida de conductividad hidráulica de la planta (Tyree y Sperry, 1989; Taiz y Zeiger, 2002; Tyree y Zimmermann, 2002; Cochard et al., 2002; Chaves et al., 2003), que a su vez provoca más cavitación y más pérdida de conductividad, lo que se conoce como embolia progresiva (Tyree y Sperry, 1989; Cruiziat et al., 2002; Chaves et al., 2003).

La pérdida de conductividad hidráulica provoca que la parte aérea de la planta reciba menos agua de la necesaria y consecuentemente sufra deshidratación. Esta deshidratación será más severa a medida que la pérdida de conductividad hidráulica sea mayor a causa de un incremento en el número de vasos cavitados (Schultz y Matthews, 1988, Taiz y Zeiger, 2002). La cavitación es muy frecuente en condiciones de sequía, y aumenta a medida que aumenta la condición de sequía (Martínez de Toda, 1991; Azcón-Bieto y Talón, 2000; Tyree M., Zimmermann M., 2002; Cochard et al., 2002, Lovisolo y Schubert, 1998).

Considerando árboles, lianas y monocotiledóneas, el diámetro máximo que puede alcanzar un vaso xilemático sin cavitar debido al peso de la columna líquida es de 0,5 mm (Tyree y Zimmermann, 2002).

Sin embargo, se ha probado que la correlación entre diámetro y vulnerabilidad a cavitar no existe si se comparan distintas especies entre sí. Tyree et al., (1994) comparando 60 especies,
señalan que, aunque la correlación entre diámetro y resistencia a cavitarse es estadísticamente muy significativa, y por ello de gran importancia evolutiva, sólo explica un 22% de la variabilidad interespecífica. Aunque la selección natural apunte a vasos estrechos en ambientes secos y a vasos anchos en ambientes húmedos, no puede adjudicarse la mayor o menor resistencia de una especie, con respecto a otra, por la simple comparación de los diámetros de sus vasos. No existe correlación suficientemente fuerte entre el diámetro del xilema y la vulnerabilidad a cavitarse que permita comparar especies entre sí en cuanto a su resistencia a la embolia (Cruiziat et al., 2002).

Por otro lado, Tyree y Zimmermann (2002) señalan que la resistencia de los vasos estaría dada, en mayor medida, por la presencia de poros en los vasos, y por su tamaño y número, en relación al vaso. La porosidad de un vaso es crítica en relación a su resistencia a cavitarse cuando adyacente a este vaso hay otro vaso cavitado. Cuando la tensión supera un determinado valor (i.e. se hace más negativa) entonces la burbuja del vaso cavitado es succionada al vaso vecino a través del poro, generándose una nueva disfunción. Un mayor número de poros facilitaría el transporte de agua, pero necesitaría de una pared de vaso más gruesa y resistente para soportar la cavitación. Un poro de mayor tamaño también facilitaría el flujo de agua, pero al mismo tiempo se haría más probable el pasaje de burbujas de vasos cavitados a vasos vecinos, extendiéndose la disfunción (Sperry y Tyree, 1988; Tyree y Zimmermann, 2002). Un poro pequeño, de membrana gruesa resiste más la tensión pero es poco conductor (Hacke y Sperry, 2001; Tyree y Zimmermann, 2002). Es por esto que debe existir un balance entre la eficiencia de conducción y la resistencia a la cavitación (Tyree y Zimmermann, 2002).

1.5 Curvas de vulnerabilidad a cavitación:

La cavitación es medible hidráulicamente o acústicamente. El método acústico de ultrasonido (UAE), tiene la ventaja de ser no destructivo ya que se puede medir in vivo al detectar el sonido que emite la rotura de la vena líquida. Su desventaja es que no se puede obtener el valor específico de conductividad hidráulica. Por otro lado, los métodos hidráulicos brindan mucha información, pero tienen la desventaja de ser destructivos (Lo Gullo, 1991). Uno de ellos, evalúa la vulnerabilidad del xilema a cavitarse construyendo curvas de cavitación. Estas curvas representan la relación entre la pérdida de conductividad hidráulica del tallo (ΔK_H), expresada en porcentaje, y el nivel de estrés hídrico que la provocó, medido en términos de potencial hídrico (Ψ) (figura 3; Tyree y Zimmermann, 2002). Para construir la curva, se
provoca, artificialmente, la cavitación del tallo en estudio. Para esto, uno de los métodos utilizados es el de “Inyección de aire a presión”. (Sperry y Saliendra, 1994). Por este método se mide, en un trozo de tallo de longitud conocida, la K_H bajo presiones de aire crecientes y provocadas sobre sus paredes laterales al efecto de crear las embolias (Tyree y Zimmermann, 2002). El gas que se aplica, con presión positiva sobre las paredes laterales, causa el mismo efecto de embolia, de igual magnitud, que causaría una presión negativa (succión) equivalente en la planta viva (Alder et al., 1997). Ver Figura 2.

Figura 2: Cámara de cavitación y método de inyección de aire desde la pared lateral del tallo.
Figura 3: típica curva de cavitation de un tallo leñoso (ΔK_H %: pérdida porcentual de conductividad hidráulica).

Primeramente, se debe eliminar del tallo toda embolia previa que pueda existir. Para esto se hace circular por el tallo agua a presión, generalmente entre 0,1 a 0,2 MPa. Luego, a 0% de embolia, se mide la K_H máxima ($K_{H_{\text{max}}}$), el máximo caudal de agua que el tallo puede conducir, (o conductividad potencial del mismo). A partir de este momento, se aplican las presiones cada vez mayores y se miden las respectivas K_H. Finalmente, el cálculo de ($K_{H_{\text{max}}}$ - K_H) / $K_{H_{\text{max}}}$*100 entrega el valor de pérdida porcentual de conductividad (Tyree M., Zimmermann M., 2002).

Otro método hidráulico utilizado es el de “Fuerza Centrífuga” (Pockman et al., 1995), en el cual el trozo de tallo se centrifuga previa medición de su K_H. Luego de cavitar, a causa de esta fuerza centrífuga, se vuelve a medir la K_H. En este método se necesitan varios trozos de tallo, a los cuales se deshidrata a diferentes niveles antes de centrifugarlos. Por lo tanto, una desventaja es que no puede hacerse una curva con un solo trozo como se hace en el método de “Inyección de aire a presión”. Otra desventaja es que el método es sólo aplicable a especies con vasos cortos o traqueidas (Alder et al., 1997), por lo que no es aplicable para medir cavitation en vid, con vasos largos, típicos de las lianas.

La pendiente de la curva de cavitation indica el volumen de vasos que se bloquea con aire por cada unidad de aumento de la presión (Alsina et al., 2007); y se traduce en la vulnerabilidad del xilema a cavitar con succiones en aumento (i.e., disminución de Ψ). Si la pendiente es marcada, estamos frente a una planta sensible, que aún bajo disminuciones leves de Ψ, llega a pérdidas altas de k_H. Si la pendiente es suave, podemos observar que, para llegar a determinados porcentajes de pérdida de k_H, necesitamos aplicar presiones mayores (i.e., Ψ más negativos). Esto se traduce en que la planta puede realizar fuerzas de succión altas para sacar agua del suelo (i.e., tolerar Ψ muy bajos) sin sufrir grandes pérdidas de k_H. (Tyree y
Zimmermann, 2002). Otro aspecto importante a tener en cuenta al analizar una curva de cavitación, es el “plateau” o meseta inicial. Si una curva presenta esta meseta, quiere decir que la especie tiene un margen de succiones a las cuales no cavita, o sea, que resiste estas succiones sin sufrir embolias. En los casos en que la meseta inicial no existe, estamos frente a plantas más vulnerables, que aún con succiones de mínima magnitud, cavitan en cierto grado. La vid es una especie con alta vulnerabilidad a la cavitación en comparación a otras especies (figura 4, Tyree y Zimmermann, 2002; Alsina et al., 2007). La vid cavita a potenciales más altos (menos negativos) que especies como Juniperus virginiana, Acer saccharum y Rizophora mangle, pero resulta más resistente que Populus deltoides. Su curva no presenta un “plateau” o meseta inicial como en las curvas de las demás especies, sino que comienza a cavitar aún a Ψ que no son suficientemente bajos para generar embolia en las otras especies. Su valor de Ψ correspondiente a ΔkH de 50% (Ψ50) es cercano a -1.5 MPa, mientras que, por ejemplo, para Juniperus, es de casi -8 MPa. Además, la pendiente indica que, una vez que comenzó a cavitar, llega a valores de embolia altos más rápidamente que Ceanothus y Juniperus. Debido a la ausencia de plateau inicial, la vid es una especie más vulnerable a cavitación que Acer, aún cuando su curva presenta una pendiente más suave. Acer comienza a cavitar a -2 MPa, mientras que la vid comienza a cavitar en cuanto la presión sobrepasa 0 MPa; pero ambas llegan al 100% de embolia a valores casi idénticos deΨ (figura 4). Aún así, y a pesar de su alta vulnerabilidad a cavitar, la vid es considerada una especie resistente a sequía. Esto indica que debe tener otros mecanismos adaptativos. Aún con altas pérdidas de kH, sobrevive el déficit hídrico, y no muere rápidamente, como debería ocurrir si no pudiera revertir la situación de embolia alcanzada a Ψ normales durante una estación de verano.
Figura 4: curvas de vulnerabilidad a cavitation de diferentes especies. Notar la diferencia en las pendientes de las curvas de una especie más vulnerable y una menos vulnerable a cavitarse. C- Ceanothus megacarpus; J- Juniperus virginiana; R- Rizophora mangle; A- Acer saccharum; V- Vitis vinifera; P- Populus deltoides. (Graficado a partir de Tyree y Zimmermannn, 2002; Alsina et al., 2007).

Se define como cavitation catastrófica el valor de pérdida de conductividad hidráulica (k_H) al que la planta no puede recuperarse y se desfolia. Para algunos autores es una pérdida que puede ir desde el 10% hasta el 50% de k_H, según la especie (Tyree et al., 1988; Nardini y Salleo., 2000; Nardini et al., 2000; Bodribb et al., 2003; Vilagrosa et al., 2003; McDowell et al., 2008). Tyree y Zimmermannn (2002) aceptan que el Ψ al que la planta pierde el 50% de k_H es un valor razonable de esta cavitation catastrófica. Cochard et al. (2002) observaron que el nogal alcanza el 70% de pérdida de kH medida en el tronco del árbol antes que el flujo transpiratorio se corte por cierre estomático.

En la vid se considera, en general, que un 50% es valor indicativo de cavitation catastrófica, aunque hay autores que sólo llaman pérdida crítica al 100% de cavitation (Sperry 2004; Alsina et al., 2007).

Algunas especies o variedades tienen Ψ_L de cavitation catastróficos más negativos que otras, por lo que admiten pequeñas cavitaciones sin sufrir consecuencias graves en su función conductora. Salleo y Lo Gullo (1989) observaron que la vid llega a valores de cavitation catastrófica cuando alcanza Ψ_L de -1,5 MPa. Alsina et al., en 2007 estudiaron curvas de cavitation de 6 variedades de vid y obtuvieron los valores promedio de Ψ_L de 50% de cavitation (Ψ_{50}), entre -0,8 y -2 MPa, según la variedad, siendo los extremos las variedades
Parellada y Sauvignon blanc, respectivamente; y de 100% de cavitación, con potenciales hídricos entre -3 y más de -4 MPa.

1.6 Estomas, su fisiología y funcionamiento:

El principal mecanismo que limita la cavitación en las plantas es el cierre de estomas (Cochard et al. 2002; Chaves et al., 2003; Chaves et al. 2010).

Los estomas (figura 5) son poros que se encuentran en la superficie foliar, encargados de regular el intercambio gaseoso de la planta con la atmósfera. Por estos poros, la planta toma CO₂ del aire para realizar la fotosíntesis y elimina agua al transpirar. La fotosíntesis es siempre paralela a la transpiración, ya que al tener los estomas abiertos para que entre el CO₂, la pérdida de agua a través de los mismos, hacia la atmósfera, es inevitable (Salisbury y Ross, 2000; Taiz y Zeiger, 2002).

Los estomas están formados por dos células especializadas llamadas células oclusivas o guardia. Los movimientos estomáticos dependen de cambios en la turgencia de estas células oclusivas y de las células epidérmicas adyacentes. Estos movimientos pueden ser hidropasivos, por modificación del potencial hídrico de las células oclusivas con relación al potencial hídrico de la hoja (Ψ_L); o hidroactivos cuando hay cambios activos en el potencial osmótico (Ψ_s) de las células oclusivas. Estos cambios en el potencial osmótico requieren gasto de energía metabólica (ATP). En los procesos hidroactivos puede participar el ácido abscísico (ABA). Esta hormona modula parte del funcionamiento del aparato estomático durante eventos de estrés hídrico. Por esto se la denomina “hormona antiestrés” (Pessarakli, 1995; Taiz y Zeiger, 2002).

La morfología de la célula oclusiva explica el mecanismo de la apertura y cierre del poro. La porción de la pared de la célula que se encuentra próxima al poro se halla más engrosada, y tiene una disposición de microfibrillas de celulosa en sentido radial que hace que, al llenarse de agua, la célula tome forma de arco (poro abierto) ya que sólo se estira la pared más distal (Pessarakli M., 1995; Salisbury y Ross, 2000).

Para que el estoma se abra, debe existir un aumento del contenido de solutos de las células oclusivas. La disminución del potencial osmótico es provocada por la entrada, desde el apoplasto y células vecinas, de K⁺ principalmente, y en menor medida, de Cl⁻. Esta entrada es activada por la luz. La clave de la absorción de K⁺ es el bombeo de H⁺. Este bombeo se da a nivel de membrana citoplasmática, hacia el exterior de la célula; y a nivel del tonoplasto de la vacuola hacia el citoplasma a través de canales iónicos. Por medio de una ATPasa de membrana, se crea un gradiente de tipo eléctrico en las mismas. Así, la entrada de K⁺ es un
proceso activo, con gasto de ATP; en cambio, el Cl– entra y sale por un gradiente eléctrico de tipo pasivo. Los H+ provienen de moléculas de almidón generadas por fotosíntesis en las mismas células oclusivas que tienen cloroplastos. Este almidón se degrada para dar ácidos orgánicos como oxalato, y luego malato, que serán los dadores de H+. El anión malato, es importante en el equilibrio del K+. Este anión proveniente de la oxidación del ácido oxálico, que libera el H+. El ácido oxálico se forma a partir de la fijación de CO2, por fotosíntesis en la célula guardiana, y por acción de la enzima PEP-carboxilasa (Salisbury y Ross, 2000; Taiz y Zeiger, 2002).

El estoma se cierra cuando la bomba de H+ se desactiva y sale K+, además de Cl–, de la célula. Parte del malato se metaboliza en la célula, mientras que parte también sale de la misma durante el cierre (Pessarakli M., 1995; Salisbury y Ross, 2000).

El ácido abscísico o ABA es la hormona que ejerce acción central en el cierre de los estomas (Chaves et al., 2003). Se sintetiza en situaciones de estrés y se encuentra en las raíces, tallos (transportándose en el xilema y floema) y en las células del mesófilo de las hojas, donde actúa directamente sobre las células guarda. Su distribución depende de gradientes de pH en el xilema y en la hoja; y de las propiedades de permeabilidad de las membranas (Chaves et al., 2003). El pH alto (alcalino), inducido por el estrés hídrico, es el responsable de que el ABA protonado (ABAH) se disocie para dar ABA–. Como las membranas celulares son menos permeables al ABA–, en este estado puede llegar directamente, desde el apoplasto y por la corriente transpiratoria, hasta las células guarda, sin ingresar antes a las células del mesófilo y perderse. Luego, una vez dentro de la célula oclusiva, el ABA promueve la salida de cationes K+ con la consecuente pérdida de turgencia (Martínez de Toda, 1991; Pessarakli M., 1995, Taiz y Zeiger, 2002). Más detalladamente, la salida de K+ se debe a la acumulación de Ca2+ en el citosol celular. Esta acumulación ocurre por medio de ciertos intermediarios - siempre promovido por el ABA+. El Ca2+ ingresa desde el exterior de la célula y se libera desde la vacuola. Los intermediarios que participan en el ingreso del catión al citosol son el peróxido de hidrógeno (H2O2) y el superóxido (O2–), mientras que para la liberación desde la vacuola se conocen intermediarios como el inositol trifosfato (IP3) y la ADP-ribosa (cADPR). Esta oscilación de la concentración de Ca2+ causa un aumento de pH que finalmente, provoca una depolarización parcial de la membrana celular con pérdida de K+. Se le atribuye el cierre estomático a la oscilación de las concentraciones de Ca2+ y no al ABA específicamente, porque la hormona auxina logra el efecto opuesto (la apertura del estoma) también por aumentos de concentraciones del mismo catión.

Pero, para una depolarización efectiva y total de la membrana, se necesita, además de la salida de K+, la salida de Cl– y malato–. Estos aniones generan un flujo de gradiente negativo, que
termina por despolarizar completamente la membrana. Sumado a estos efectos eléctricos de cargas positivas y negativas, se encuentra la desactivación de la ATPasa (bomba de H⁺). Esta bomba se desactiva por la inhibición de la acción de la luz azul sobre la misma, por la acción del ABA, ya mencionada (Taiz y Zeiger, 2002).

Las citocininas, por otro lado, que también son hormonas relacionadas con el estrés en las plantas, tienen un efecto opuesto al del ABA, pudiendo, a veces, revertirlo (Chaves et al, 2003). Una baja concentración de citocininas está asociada al cierre de estomas (Stoll et al., 2000).

En vid, la acción del pH, asociada al ABA, parece tener un efecto particularmente significativo, ya que en esta especie los pH xilemáticos son de alrededor de 4,8. Estos valores permiten una mayor concentración de hormona activa (Stoll et al., 2000).

El cierre del estoma también puede darse por simple pérdida de turgencia de las células oclusivas, sin la presencia del ABA. Esto se da cuando estas células pierden agua por evaporación de la misma célula hacia la atmósfera en un proceso hidropasivo (Taiz y Zeiger, 2002), modulado por la turgencia de las células epidérmicas (Chaves et al., 2003). Este proceso está íntimamente ligado con el control estomático de la embolia como se verá en el punto siguiente.

En resumen, el funcionamiento del aparato estomático es un mecanismo complejo regulado por variados estímulos (luz, CO2, agua, temperatura y hormonas, turgencia de la epidermis) al mismo tiempo (Chaves et al, 2003).

Figura 5: Micrografía electrónica de barrido de un estoma de Vicea sp. (Fuente Dennis Kunkel Microscopy, http://www.denniskunkel.com/).
1.7 Limitación estomática de la cavitation:

La pérdida de agua desde el estoma (por transpiración) depende de dos componentes, uno físico, que se refiere a la demanda de agua y depende del déficit de presión de vapor de la atmósfera a la temperatura de la hoja; y otro biológico, que es la conductancia estomática (g_s; Pessarakli, 1995). La pérdida de agua puede ser afectada por varios factores como la humedad del suelo (i.e. la oferta hídrica), la humedad del aire (demanda), la luz, la temperatura y la velocidad del viento (Martínez de Toda, 1991; Pessarakli, 1995; Taiz y Zeiger, 2002; Buckley et al., 2005). Según Reddy et al., (1998) y Ogle et al., (2002), a temperaturas en aumento, durante el día, existe un incremento de la transpiración, dado que con mayores temperaturas del aire y de la hoja, el gradiente de presiones parciales de vapor entre el aire y la hoja aumenta (Pessarakli, 1995). Además, la transpiración cumple la función de eliminar calor y evitar el sobrecalentamiento de la hoja, mientras ingresa CO_2 y luz para realizar la fotosíntesis. Cuando esta transpiración se hace excesivamente alta (por altas temperaturas, generalmente mayores de 35ºC) y la pérdida de agua es grande, los estomas se cierran para evitar mayores pérdidas y consecuentes deshidrataciones (Turner, Schulze y Gollan, 1984; Pessarakli M., 1995 Sparks y Black, 1998; Tardeu y Simonneau, 1998, Cochard et al., 2002; Taiz y Zeiger, 2002; Chaves et al., 2003; Vilagrosa et al., 2003; Buckley et al., 2005; Franks et al., 2007; McDowell et al., 2008; Lovisolo et al., 2002, Lovisolo et al., 2010; Chaves et al., 2010).

Este cierre parcial o total de estomas, con la consiguiente disminución de g_s, frena la difusión de vapor de agua desde la cavidad subestomática de la hoja hacia la atmósfera (Taiz y Zeiger, 2002; Buckley et al., 2005; Lovisolo et al., 2010; Chaves et al., 2010). De esta manera, la planta deja de perder agua, el potencial deja de disminuir, y el nivel de embolismo que haya alcanzado la planta se frena (Cruiziat et al., 2002).

El cierre estomático es, junto con la inhibición del crecimiento foliar, la principal respuesta de la planta a la escasez de agua. Su función es proteger a la planta de la pérdida excesiva de agua y la consecuente cavitation del xilema, deshidratación y muerte (Cruiziat et al., 2002; Cochard et al. 2002; Vilagrosa et al., 2003; Chaves et al., 2003; Chaves et al. 2010). Una vez que se cierra el estoma, la pérdida de agua y la embolia progresiva dependen del intercambio cuticular, que puede considerarse mínimo (Öpik y Rolfe, 2005; Taiz y Zeiger, 2002). En general, una planta poco vulnerable a cavitar puede mantener una g_s alta, y por ello una tasa de intercambio de carbono mayor, al poder tener los estomas abiertos por más tiempo. Plantas que cavitan fácilmente cierran sus estomas antes, para limitar esta cavitation. (Tyree M., Zimmermann M., 2002). Sparks y Black (1998) encontraron que ecotipos de *Populus*
trichocarpa de zonas áridas manejan g_s entre márgenes de seguridad tales que evitan cavitar. Otros ecotipos de la misma especie pero de climas y suelos húmedos, no muestran una respuesta estomática tan protectora, y mantienen una g_s máxima, cavitando rápidamente hasta deshidratarse totalmente y morir. Otros autores discuten que una planta que cavita pueda mantener alta g_s, ya que si kH disminuyen a causa de la cavitación, g_s tiene que disminuir proporcionalmente, dada la estrecha relación que existe entre kH y g_s (Nardini y Salleo, 2000). Estos autores hallaron, en un estudio de 11 especies forestales y ornamentales diferentes, que todas admiten que el potencial agua en la hoja (ψ_L) mínimo alcanzado en el día, llegue a valores iguales o menores a potenciales de cavitación (ψ_{CAV}) que significan una disminución del 10% de kH. Estos autores incluyeron en su trabajo a especies siempreverdes y de maderas de poros difusos como Viburnum tinus L., Myrtus communis L., Laurus nobilis L., y Prunus laurocerasus L. Las dos primeras son especies adaptadas a zonas más áridas, y las últimas son de zonas húmedas. Las otras siete especies, deciduas, eran de los géneros Corylus, Castanea, Juglans, Malus, Magnolia, Cercis y Calycanthus. Aunque las especies no sobrepasaron el 10% de pérdida de kH, estos autores no hallaron correlación entre g_s máxima y ψ_{CAV}; pero sí hallaron correlación entre la transpiración y kH del tallo ($r^2=0.68$); y entre g_s y kH del tallo ($r^2=0.60$). Esto indica que debe haber algún mecanismo o señal, que no depende exclusivamente de g_s, sino que también depende de kH, que frena la embolia progresiva. Es posible que, dada la respuesta inmediata que se requiere del estoma frente a un fenómeno tan rápido como el de la cavitación, el mecanismo de cierre hidropasivo sea el que se produce preferencialmente.

De acuerdo con el tipo de respuesta estomática, y la consecuente clasificación de las plantas en isohídricas o anisohídricas, en general, la vid es considerada una especie isohídrica, evitadora de la sequía, con un control estomático eficiente (Chavez et al 1987; Higgins et al. 1992; Schultz, 2003, Chaves et al. 2010). Sin embargo hay algunas variedades que muestran, en determinados casos, tener un ajuste estomático más eficiente que otras (Schultz, 2003; Soar et al., 2006). Por esto, dentro de la especie, se ha intentado clasificar a algunas variedades como isohídricas y a otras como anisohídricas, según su comportamiento.

Se ha estudiado el comportamiento de más de veinte variedades de vid, entre las cuales se encuentran las más conocidas (Tabla 1; Chaves et al. 2010). En estos estudios se han encontrado variados resultados, muchas veces contradictorios, ya que una misma variedad puede tener comportamientos opuestos según las condiciones en las que se la estudia. Por esto, se ha concluido que no es posible clasificar rígidamente a las variedades de vid en isohídricas o anisohídricas (Chaves et al., 2010; Lovisolo et al., 2010).
En un estudio de más de diez variedades de vid se observó que las diferencias entre variedades isohídricas y anisohídricas no son tales, sino que se dan dentro de una misma variedad, entre plantas con y sin déficit hídrico. Tanto la fotosíntesis como g_s no se diferenciaron significativamente entre variedades optimistas y pesimistas, y sólo lo hicieron entre tratamientos hídricos dentro de una misma variedad (Lovisolo et al., 2010). El potencial hídrico de medio día (Ψ_L) fue la única variable que se diferenció entre las variedades, y sería la que, de alguna manera, permitiría clasificarlas como pesimistas u optimistas.
Tabla 1: listado de algunas variedades de vid y su categorización en isohídricas o anisohídricas en función de la respuesta del potencial hídrico a estrés hídrico, cultivadas a campo (C) o en maceta (M). (Chaves et al., 2010). Observar que según las condiciones una misma variedad puede responder como isohídrica o anisohídrica.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Clasificación</th>
<th>Condiciones de ensayo</th>
<th>Rangos de (\Psi) (MPa)</th>
<th>Referencias bibliográficas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabernet Sauvignon</td>
<td>anisohídrico</td>
<td>C</td>
<td>-0.7 a -1.5</td>
<td>Williams y Baeza (2007)</td>
</tr>
<tr>
<td></td>
<td>isohídrico</td>
<td>C</td>
<td>-0.25 a -1.5</td>
<td>Chalmers (2007)</td>
</tr>
<tr>
<td>Grenache</td>
<td>Casi isohídrica</td>
<td>C y M</td>
<td>-0.2 a -1.4</td>
<td>Schultz (2003)</td>
</tr>
<tr>
<td></td>
<td>No claro</td>
<td>M</td>
<td>-0.2 a -0.4</td>
<td>Chouzouri y Schultz, (2005)</td>
</tr>
<tr>
<td>Sangiovese</td>
<td>isohídrico</td>
<td>C y M</td>
<td>-0.2 a -1.3</td>
<td>Poni et al., 2007</td>
</tr>
<tr>
<td></td>
<td>anisohídrico</td>
<td>M</td>
<td>-0.55 a -1.3</td>
<td></td>
</tr>
<tr>
<td>Syrah</td>
<td>anisohídrica</td>
<td>C y M</td>
<td>-0.2 a -0.8</td>
<td>Schultz (2003), Chalmers (2007) y Rogiers et al (2009)</td>
</tr>
<tr>
<td></td>
<td>No claro</td>
<td>M</td>
<td>-0.2 a -0.4</td>
<td>Chouzouri y Schultz, (2005)</td>
</tr>
<tr>
<td>Tempranillo</td>
<td>isohídrico</td>
<td>C y M</td>
<td>-0.05 a -1.3</td>
<td>Medrano et al. (2003) Antolin et al. (2006) Souza et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Casi isohídrico</td>
<td>M</td>
<td>-0.2 a -1.5</td>
<td>Intrigliolo et al (2005)</td>
</tr>
<tr>
<td></td>
<td>Anisohídrico</td>
<td>C y M</td>
<td>-</td>
<td>Lovisolo et al. (2010), Santesteban et al. (2009)</td>
</tr>
<tr>
<td>Manto negro</td>
<td>isohídrica</td>
<td>C</td>
<td>-0.05 a -0.7</td>
<td>Medrano et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>anisohídrica</td>
<td>-</td>
<td></td>
<td>Lovisolo et al. (2010)</td>
</tr>
</tbody>
</table>
Como ya se mencionó, según varios autores, existe un cierre de estomas previo a que se produzca una cavidad catastrófica, más o menos importante dependiendo de cada especie y variedad (Azcón-Bieto y Talón, 2000; Sperry y Pockman, 1993; Jones et al., 1991; Tyree et al., 1988; Tyree y Zimmermann, 2002; Chaves et al., 2003). Si se observa, en particular, el cierre estomático de medio día, momento aparentemente óptimo para la fotosíntesis, con la mayor intensidad lumínica, vemos que parece estar controlado por la humedad relativa del aire (Azcón-Bieto y Talón, 2000). Esto es debido a que los estomas pueden cerrarse por pérdida de turgencia relativa a las células adyacentes de la epidermis, debida directamente a pérdida de agua por evaporación desde las células oclusivas hacia la atmósfera (Taiz y Zeiger, 2002; Chaves et al., 2003). Muchas especies vegetales cierran los estomas en respuesta a un aumento en la diferencia de presión de vapor entre la hoja y el aire, y la magnitud de esta respuesta depende de la especie y de las condiciones hídricas de la misma. Una hipótesis que muchos investigadores aceptan es que la humedad relativa afecta la tasa de pérdida de agua de la hoja, y esto genera una diferencia de potencial en la epidermis, con pérdida de turgencia, que desencadena el cierre del estoma. Para otros, los mecanismos intermedios responsables del cierre estomático previo a la cavidad catastrófica, son una combinación de señales químicas hormonales y señales físicas (Comstock, 2002), como pequeñas cavaciones que se producen en pecíolos y nervaduras de las hojas (Nardini et al., 2001). Esto está en acuerdo con la teoría de Zimmermann (1983), que dice que la segmentación comienza desde los extremos de la planta, donde el \(\Psi \) es más bajo. Esto es cierto en muchas especies, como ocurre en algunas especies de altura, donde se vio que la raíz es más vulnerable que el tallo, (Pockman y Sperry, 2000; Cruiziat et al., 2002). En otro trabajo observaron que la hoja es el primer órgano en el que el xilema cavita, ocurriendo esto en las primeras horas de la mañana (Salleo et al., 2000). Pero, por otro lado, Tyree et al., (1993) y Cochard et al. (2002) midieron cavidad en nogal y vieron que los órganos más vulnerables son las hojas, seguido de los tallos, tronco y finalmente las raíces, que son las más resistentes a cavidad, pero que según Zimmermann (1983), deberían ser tan vulnerables como las hojas. Por otro lado, hay estudios que muestran que, en algunas especies, no hay diferencia entre la vulnerabilidad del pecíolo y la del tallo, como lo que ocurre en muchos Quercus, Fraxinus y Populus (Cruiziat et al., 2002). En Betula occidentalis la tensión promedio de cavidad crece desde las raíces (-0,66 MPa), a los tallos (-1,17 MPa) y a las ramas más jóvenes (-1,36 MPa; Sperry y Saliendra, 1994).

Según el modelo hidromecánico y bioquímico de Buckley et al. (2003), existe una retroalimentación de tipo hidromecánica entre \(g \) y \(k_H \) por regulación de la presión osmótica de la célula oclusiva, en respuesta a la presión de turgencia de la epidermis. El modelo explica
que, inicialmente, la apertura estomática es más sensible a la turgencia de la epidermis que a la turgencia de la misma célula guardiana. Esto significa que, en un primer momento, la desecación de la epidermis provoca una abertura del estoma antes que un cierre. Esto ocurre porque este tejido produce un efecto inicial de “tironeo” sobre las células oclusivas, llamado “ventaja mecánica de la epidermis”, y que responde a una retroalimentación de tipo positiva. Luego, por una retroalimentación negativa final, este efecto se anula y se revierte, permitiendo que el estoma finalmente se cierre, alcanzando así el “estado de estabilidad”, y permaneciendo así mientras las condiciones hídricas lo requieran. Esto quiere decir que las células oclusivas del estoma responden directamente al potencial de turgencia (Ψ_p) de la epidermis (Cochard et al., 2002; Cruiziat et al., 2002; Chaves et al., 2003) que depende de k_H de la planta. Esto mismo indican otros autores cuando dicen que g_s responde de manera marcada a cambios en el estatus hídrico de la hoja inducidos por cambios en la k_H de la planta (Salisburi y Ross, 2000; Saliendra et al. 1995; Nardini et al., 2001; Bodribb et al., 2003; Ripullone et al., 2007). También se mostró que cualquier reducción en k_H se traduce en una reducción de g_s (Sperry y Pockman, 1993). Mencuccini y Comstock (1999) estudiaron que, en plantas de Phaseolus, existe una mediación entre el intercambio gaseoso y la hidráulica de la planta, i.e. entre g_s y k_H. En Laurus nobilis L. se observó una disminución de solamente el 25% de g_s cuando la planta alcanzó determinado nivel de cavitación, considerado catastrófico. Esta disminución fue suficiente para que la planta pudiera mantener el Ψ_L alcanzado y evitar mayores cavitations (Salleo et al., 2000).

Se sabe que k_H del tallo influye en la regulación estomática y la transpiración (Saliendra et al., 1995; Meinzer et al., 1995, Schultz, 2003, figura 6; Tyree y Zimmermann, 2002; Nardini y Salleo, 2000; Cruiziat et al., 2002). En Pinus ponderosa, la g_s y la fotosíntesis disminuyen cuando disminuye k_H (Hubbard et al., 2001). A su vez se sabe que k_H está limitada por la cavitación y embolismo de los vasos xilemáticos (Schultz y Matthews, 1988; Sperry y Pockman, 1993; Salleo et al., 2000).
En los casos en que la señal de sequía proviene del suelo, por desecación del mismo, la hormona ABA es la causante de una respuesta estomática hidroactiva, como la previamente mencionada (Taiz y Zeiger, 2002).

Algunas especies, como Acer saccharum, Helianthus annus y Eucalyptus gomphocephala, especies anisohídricas, permiten que se llegue a un cierto nivel de cavitación para mantener al máximo la fotosíntesis antes de cerrar los estomas. Otras, como Pinus nigra, algunas gramíneas C4 y leñosas de clima templado, consideradas como isohídricas, tienen un margen de cierre estricto, es decir cierran sus estomas antes de que se produzca ninguna cavitación, anteponiendo la seguridad del tejido conductor al intercambio gaseoso (Tardieu y Simonneau, 1998; Cruiziat et al., 2002; Franks et al., 2007; Mc Dowell et al., 2008).

En la vid, y analizando la coordinación que existe entre la gs y la cavitación, se sabe que existen diferencias en el comportamiento estomático e hidráulico en algunas variedades (Tabla 1), especialmente de diferentes orígenes geográficos (Park, 2001; Schultz, 2003; Lovisolo et al., 2002; Lovisolo et al., 2010; Chaves et al., 2010). En este sentido, se observó que Chardonnay tiene gs muy diferentes cuando se comparan plantas en capacidad de campo o bajo estrés hídrico (Park, 2001). Schultz, (2003), mediante estudios sónicos, observó que Syrah mantiene una gs mayor, siendo más resistente a cavitarse mientras que Grenache muestra mayor susceptibilidad y cierra sus estomas con anterioridad. Chouzouri y Schultz (2005) encontraron, en 4 variedades de vid, que la disminución en gs ocurría concomitantemente a un
aumento de señales acústicas de cavitation, y al mismo tiempo que una disminución de k_H, aunque no pudieron corroborar las diferencias halladas entre Syrah y Grenache en el estudio de Schultz (2003). Estas citas, sumadas a las evidencias que entregan las curvas de vulnerabilidad de la vid con respecto a las curvas de otras especies, permiten hipotetizar que una mayor sensibilidad del estoma es compensatorio de una mayor vulnerabilidad a cavitar, i.e. que g_s disminuye cuando k_H disminuye; y que se ha corroborado que todas estas respuestas dependen en cierto grado de las condiciones climáticas y de cultivo bajo las cuales viven las plantas (Lovisolo et al., 2010; Chaves et al., 2010). Una planta poco vulnerable podrá mantener una tasa de intercambio gaseoso más alta que una planta más vulnerable (Tyree y Zimmermann, 2002), ya que al no cavitar, g_s no disminuye. Es importante aclarar que cuando se habla de cierre estomático, es posible referirse a un cierre total o a un cierre parcial del poro. Algunos autores se refieren a una disminución progresiva de g_s y no a una anulación de la misma (Salleo et al., 2000; Cruiziat et al., 2002).

Por otro lado, Correia et al. (1995) no hallaron, en algunas vides de vinificar, correlación entre disminuciones de g_s y el déficit parcial de vapor y los valores de Ψ_L medidos.

1.8 Reparación del xilema cavitado:

La alta vulnerabilidad a la cavitation de la vid, aparentemente no compatible con la ya conocida alta resistencia a sequía del cultivo, parece estar ligada a un eficiente mecanismo de reparación de xilema cavitado, el cual ha sido evidenciado en varios trabajos. Holbrook et al. (2001) pudieron realizar observaciones in vivo de reparación de xilema en vid por medio de técnicas de resonancia magnética.

La teoría que explica el rellenado de vasos cavitados se denomina “mecanismo osmótico” (Salleo et al., 2004). Esta teoría explica el paradigma más antiguo del mecanismo de rellenado de vasos cavitados, y se basa en la disolución de la burbuja de aire en el líquido entrante al vaso por presión positiva, i.e. presión radical, que se genera por una acumulación de osmolitos que actúan sobre el potencial osmótico (Sperry et al., 1987). La reparación puede ser diaria o estacional (Tyree y Zimmermann, 2002). En vid parece tener gran importancia la reparación diaria.

Físicamente, para que exista reparación por presión positiva se debe cumplir con la ley de Henry (1803). Esta ley dice que, a temperatura constante, la solubilidad de un gas en agua es proporcional a la presión parcial del gas adyacente al agua y en equilibrio con la misma. En la ecuación 5 se iguala la presión parcial del gas adyacente a la solución (p), a la concentración del soluto (c), multiplicada por una constante (k).
Como el agua en las plantas está saturada con aire a presión atmosférica, el paradigma requiere que se genere una presión que se encuentre por encima de la presión atmosférica para que el gas se disuelva (Tyree \textit{et al.}, 1999, Cruiziat \textit{et al.}, 2002). Esta condición se da solamente en algunas plantas, mayormente monocotiledóneas (maíz y bamboo), algunas plantas del género \textit{Piper} (Tyree y Zimmermann, 2002) y en algunas lianas (Ewers \textit{et al.}, 1997), como la vid (Sperry \textit{et al.}, 1987). Estas plantas pueden desarrollar presiones positivas de raíz, ya sea durante la noche (vid y maíz), o en la primavera, previo a la brotación (McCully, 1999). En plantas leñosas y la mayoría de los árboles no se ha podido medir presión de raíz, solamente en algunas especies de la sabana neotropical (Domec \textit{et al.}, 2006) y en \textit{Betula, Acer saccharum} y \textit{Juglans regia} (Sperry \textit{et al.}, 1988, Hacke y Sauter, 1996, Ameglio \textit{et al.}, 2002). Además, debe aclararse que en algunas plantas, la presión de raíz existente puede ser insuficiente para rellenar vasos embolizados. Los osmolitos que permiten esta diferencia de potencial osmótico, y que se acumulan en cantidades detectables, son el diferentes moléculas orgánicas, como azúcares y proteínas, y el potasio (K) (McCully, 1999).
2 Objetivos e Hipótesis:

La intención de la tesis fue conocer las diferencias en cuanto a vulnerabilidad a cavitación y conductancia estomática frente a estrés hídrico, entre variedades de vid. Las variedades estudiadas fueron Syrah, de origen mésico, Grenache, originaria de lugares áridos, y Malbec y Chardonnay originarias de zonas húmedas. En este sentido, se debe aclarar que el origen de las variedades de vid no es resultado de la selección natural, sino antrópica. Por este motivo, es probable que en zonas áridas las variedades se hayan seleccionado por el carácter de ser resistente a sequía, pero en zonas húmedas no, pudiendo, en estos casos, la resistencia, ser consecuencia del azar. Se intentó conocer si las variedades de orígenes más áridos efectivamente se encontraban, o no, más adaptadas que las de orígenes húmedos. Esta adaptación, si existiese, se manifestaría como una mayor resistencia a la cavitación, dada por una regulación estomática más sensible, o por contar con un xilema más resistente, o por presentar ambas adaptaciones. Y una variedad que fuera más vulnerable a cavitarse debería tener un manejo estomático más preciso que una variedad con xilema más resistente. En síntesis, las hipótesis y objetivos quedaron planteados de la siguiente manera:

2.1 Hipótesis:

H1: Vides sometidas a déficit hídrico disminuyen g_s para evitar sufrir cavitaciones catastróficas (pérdida de $k_H = 50\%$)

H2: Algunas variedades de vid, cuando crecen bajo restricción hídrica, se aclimatan mejor desarrollando un ajuste estomático más preciso, ó un sistema conductor menos vulnerable a cavitarse, ó ambas. Éstas últimas pueden cerrar los estomas a Ψ más bajos sin cavitarse.

H3: Las variedades originadas en climas áridos están más adaptadas y resisten mejor la cavitación que las originadas en climas húmedos.

2.2 Objetivos:

Objetivo general: Estudiar en la vid el ajuste estomático como medio para evitar la cavitación.

Objetivo específico nº 1: Verificar si las variedades de vid sometidas a estrés hídrico disminuyen la conductancia estomática (g_s) para evitar la cavitación catastrófica (pérdida del 50% de k_H).

Objetivo específico nº 2: Verificar si las variedades sometidas a estrés hídrico se aclimatán; desarrollando una regulación estomática más precisa, ó un xilema que permita alcanzar valores de ψ_L más bajos sin cavitarse, ó ambas.
Objetivo específico nº 3: Conocer si las variedades originadas en climas áridos están más adaptadas que las originadas en climas húmedos, resistiendo mejor la cavitation.
3 Materiales y Métodos:

Se instaló un ensayo en macetas con plantas de *Vitis vinifera* cultivar Malbec, Grenache, Syrah y Chardonnay. El objetivo fue comparar el comportamiento de las variedades cultivadas con y sin restricción hídrica, en cuanto al embolismo que se produjo a lo largo del día, y la evolución de la conductancia estomática; para determinar si esta última controla la cavitation.

Las plantas se cultivaron bajo 2 niveles de humedad edáfica (capacidad de campo y déficit hídrico) en invernáculo, durante 3 meses. Al final de este período, durante un día completo y a intervalos regulares de una hora, se midieron las variables fisiológicas conductancia estomática (*gs*), transpiración (*E*) y potencial hídrico foliar (*ΨL*), desde preamanecer (*ΨPD*).

Luego, se cortaron los sarmientos y en banco (*in vitro*) se construyó la curva de cavitation de cada planta por el método de Inyección de aire a presión (Sperry y Saliendra, 1994). A cada curva se le ajustó una misma función que relacionaba la pérdida de conductividad hídrica con el *ΨL*. A partir de estas funciones, y conociendo la evolución diaria del *ΨL*, se pudo, por cálculo, obtener la embolia alcanzada a lo largo del día (Emb %). La comparación de la ocurrencia de picos en las curvas diarias de *gs* y Emb% permitió definir el tipo de control estomático sobre la embolia.

Para confirmar hipótesis que se derivaron del estudio, se desarrolló a partir de las leyes hidráulicas de Van den Honert y de Fick (Ec 2 y 3), un modelo mecanístico con el cual probar formalmente la mecánica del funcionamiento estomático, su coordinación con la conductancia hidráulica de la planta y su función frente a eventos de cavitation en la vid.

3.1 Experimental:

En la Estación Experimental del INTA Mendoza, se instaló un experimento en macetas con las variedades Malbec, Syrah, Grenache y Chardonnay (Figura 7) a pie franco. De un lote de plantas de 2 años, producidas en la misma estación experimental, se eligieron 6 plantas similares por variedad, obteniendo un total de 24 macetas. Las macetas tenían 3 L de capacidad y el sustrato fue un suelo franco arenoso (volumen de sedimentación 80 cm³ %g), no salino (se lavó para eliminar sales antes de plantar). Las plantas se criaron en un invernáculo de polietileno (Tº media diaria 25°C, PAR 800 μmoles m⁻² s⁻¹), manteniendo 2 brotes en crecimiento durante 2 meses en la estación de primavera verano de la temporada 2009-2010.
Los diferentes tratamientos fueron:
CC: testigo bien regado, hasta capacidad de campo o 100% de agua edáfica transpirable; potencial de suelo (Ψ_{soil}) = -10 kPa.
DH: déficit hídrico, 50% de la humedad edáfica transpirable; Ψ_{soil} = -30 kPa. Este nivel se eligió por considerarse como un strés hídrico moderado a leve según la bibliografía (Sadras y Milroy, 1996).
El diseño experimental fue de Parcelas al Azar, con arreglo factorial, con 4 variedades x 2 niveles de riego x 3 repeticiones. Cada maceta con 1 planta fue la parcela experimental, la unidad experimental y la unidad de análisis.
Al inicio, todas las plantas se regaron a saturación (hasta que drenaron). Una vez que alcanzó la capacidad de campo, 2 días después de saturación, los tratamientos se pesaron cada 2 días para reponer el agua transpirada en los CC y verificar que los DH alcanzaran su humedad correspondiente. El tratamiento DH se dejó sin riego hasta que se consumiera por transpiración toda el agua y llegara al valor de humedad (g/g) programada. Luego de alcanzado este punto, se repuso el agua transpirada de igual manera que para los CC. Para medir solamente la transpiración de las plantas, se cubrió la superficie de tierra de cada maceta con una capa de perlita de unos 3 cm de espesor que actúa como barrera de vapor contra la pérdida de agua por evaporación (Glenn et al., 1998).
El peso correspondiente a capacidad de campo se calculó por sumatoria del peso de la tierra en capacidad de campo más el peso de la maceta, la perlita y cada planta. De la misma manera, el peso de las macetas en DH se calculó por el peso de la tierra a 50% del agua transpirable, más el peso de la maceta, la perlita y la planta.
Con la curva de capacidad hídrica (humedad de suelo g%g vs. Ψ_{suelo} en kPa) del sustrato (figura 11), se determinó que, a -10 kPa de succión matriz (potencial de suelo Ψ_{soil} a capacidad de campo) se tenían 22 g%g de humedad. Luego se calculó la humedad del suelo correspondiente al 50% del agua transpirable de la siguiente manera:

\[
Fracción \text{ H}_2\text{O} \text{ transpirable (50%)} = 0.5 = \frac{(\text{humedad de suelo} - \text{humedad mínima})}{(\text{capacidad de campo} - \text{humedad mínima})}
\]

Donde: humedad de suelo = 0.13 g/g.
humedad mínima = 5.6 g%g = 0.56 g/g. (se considera humedad mínima a -1.500 kPa; comunicación personal Hernán Vila, 2010)
capacidad de campo = 22 g%g = 0.22 g/g.
Con el cálculo de la humedad de suelo a 50% de agua transpirable (0,13g%g) y leyendo en la curva de capacidad hídrica del sustrato (figura 11), se determinó que para el tratamiento de DH, el $\Psi_{\text{soil}} = -30$ kPa de succión matriz.

El ensayo se instaló en Octubre de 2009 y las plantas que debían estar en DH alcanzaron el nivel de humedad correspondiente a ese tratamiento, por transpiración, 20 días después (21 de Octubre). A partir de este día, todos los tratamientos se mantuvieron por 3 meses.

![Fotografía del ensayo experimental en invernáculo con las plantas en maceta.](image)

Figura 7: fotografía del ensayo experimental en invernáculo con las plantas en maceta.

Al final del período de 3 meses, se midieron, a lo largo de un día completo, desde preamanecer hasta las 16 horas y a intervalos de una hora, las variables Ψ_L, g, y E. Estas mediciones se hicieron comenzando por g, y E, para luego cortar la hoja y medir Ψ_L. La cantidad total de hojas de las plantas limitó la posibilidad de realizar mediciones más allá de las 16 h. Luego de terminar con las mediciones a lo largo del día, los tallos se cortaron y se enviaron al laboratorio para medir la curva de cavitation.

En un lote paralelo de plantas en maceta podadas a 2 yemas, de 3 años de edad, de las mismas variedades, y mantenidas en capacidad de campo, se midió el Ψ_L y el potencial hídrico del tallo (Ψ_{tallo}). Esto se hizo para investigar la relación entre ambas variables, ya que como se mencionó en la introducción, el Ψ y la cavitation son diferentes en los distintos órganos de la planta. Para ello, desde las 8:00 h y hasta las 16:00 h, y a intervalos regulares de 2 horas, se hicieron mediciones de una y otra variable en hojas vecinas.
3.1 Variables medidas:

- Curvas de cavitación: Pérdida de conductividad hidráulica (ΔK_H) vs. presiones crecientes de aire por el método de Inyección de aire a presión utilizando una cámara de cavitación (BIOCONTROL, Córdoba, Argentina; Sperry y Saliendra, 1994).

En la figura 8 se muestra una imagen del funcionamiento del método. El tallo, que se encuentra dentro de la cámara de cavitación, está a su vez conectado a una fuente de agua. Esta agua que circula por el xilema del mismo, a una presión determinada, permite calcular K_H. Luego, por medio de una manguera que conecta la cámara con una fuente de gas N$_2$, se hace ingresar al tallo, de manera transversal, gas a presión conocida. Esta presión causará la cavitación de los vasos del xilema y por lo tanto, una pérdida de K_H.

En este trabajo se tomaron segmentos de tallo de entre 10 y 12 cm de largo de la parte media del sarmiento y se conectaron por uno de sus extremos a una manguera que a su vez estaba conectada a una fuente de agua a presión (0,2 MPa). El extremo distal del tallo se encontraba ubicado sobre un trozo de papel absorbente que recibía el agua que pasaba a través del tallo. El papel se taraba previamente en seco, en una balanza digital, y luego de recoger el agua que fluyó por el tallo durante 15 a 60 segundos, se volvía a pesar húmedo. Así, por diferencia se obtenía el peso de agua que circulaba por el tallo. La operación se repetía, y el peso de agua obtenido se llevaba a unidades de volumen (cm^3) considerando una densidad del agua de 1, para calcular luego la conductividad hidráulica K_H (ecuación 6).

$$
K_H = \frac{Caudal_{H_2O}}{presión(H_2O)} \left(\frac{Longitud(tallo)}{presión(H_2O)} \right)
$$

Ec. 6

Donde:

- K_H = conductividad hidráulica
- $Caudal_{H_2O}$ = caudal (g s$^{-1}$) de agua que circuló por el tallo en cada ciclo.
- $Longitud$ = cm de largo del trozo de tallo.
- $presión$ = MPa de presión del flujo de agua que atravesaba el tallo.

Esta K_H se relacionaba con la presión de aire que se aplicaba transversalmente a la estaca por medio de la cámara de cavitación, (Figura 2 y 8) conectada al sistema (Figura 8 y 9), y que causaba los eventos de cavitación deseados. En cada ciclo de aplicación de presión se medía la correspondiente K_H. Las presiones aplicadas fueron desde 0 MPa, (donde se mide la $K_{H\text{máx}}$, con embolia nula) hasta 4 MPa (capacidad máxima del equipo) y a intervalos de 0,2 MPa. Esta presión de aire (Ψ_{aire}) que se ejerció sobre los laterales de la estaca era equivalente a la presión negativa de succión que realizaría una planta al tomar agua de un sustrato (Ψ_L, Alder
et al., 1997). De esta manera, se iban llevando a cabo sucesivos ciclos de medición (K_H, Ψ).
Es importante aclarar que antes de comenzar con las mediciones, se hizo circular agua a presión por el tallo, barriendo toda embolia que pueda contener en su interior (purga). Midiendo en este punto, se obtuvo $K_{H\ max}$. Luego, se calculó la pérdida porcentual de K_H a partir de $\Delta K_H = (K_{H\ max} - K_H) / K_{H\ max}) \times 100$, que se graficó con respecto al Ψ alcanzado en cada punto, construyendo la curva de cavitación de ese sarmiento ($\Delta K_H \ vs. \Psi$; figura 10).

Cuando por este tallo dejaba de salir agua, y sólo se observaba salida de aire, se consideraba que los vasos del tallo habían cavitado totalmente.
Existieron casos en los que el tallo no alcanzó el 100% de embolia, y en estos la presión máxima que pudo aplicarse, con el equipo con el que se contó, fue de -4 MPa.

Figura 8: cámara de cavitación.
Figura 9: equipo para medir la presión del gas que se aplica transversalmente al tallo para causar cavitación.

Figura 10: Tres tipos de curvas de cavitación. El tipo de curva depende de la especie y/o variedad. La curva de puntos corresponde a una especie más sensible a cavitar que la curva de rayas.

A partir de la curva de cavitación se obtuvo la variable Ψ_{50}, que es la presión en MPa a la cual ΔK_H fue del 50% (50% de cavitación). Las curvas se ajustaron mediante curvas de crecimiento - $y = a \cdot \left(\exp(b \cdot x) - \exp(c \cdot x) \right)$- obteniendo un ajuste por planta, $R^2 > 80\%$, en todos los casos, (ver anexo). Luego, los parámetros de los ajustes curvilineales, que indicaban la pendiente (a), concavidad (b) y meseta (c) se consideraron como variables descriptivas de la vulnerabilidad a cavitar (Alsina et al., 2007). Las curvas de cavitación se estudiaron, para detectar las posibles diferencias entre las mismas, hasta -1,4 MPa de Ψ_L, equivalente a aproximadamente un 30 a un 40% de cavitación alcanzada, ya que las plantas nunca alcanzaron Ψ_L inferiores a ese valor.
- Ψ_{suelo}: se estimó a partir de la curva de capacidad hídrica, que se midió mediante el método de la olla de presión ($\text{g}\%\text{g vs. kPa}$) para el sustrato utilizado en el ensayo.

Figura 11: Curva de capacidad hídrica del sustrato utilizado en el ensayo.

- Humedades de suelo: ($H_\text{g/g}$). Los valores de humedad se obtuvieron por método gravimétrico, con estufa a 105° C.

- Potencial hídrico de la hoja ($\Psi_L; \text{MPa}$): Se midió con cámara de presión (4P, BIOCONTROL, Buenos Aires, Argentina), envolviendo las hojas con bolsas de polietileno previamente al corte para evitar que transpiraran.

- Potencial hídrico de tallo ($\Psi_s; \text{MPa}$): Antes de realizar la medición, debió equilibrarse el estado hídrico de la hoja con respecto a la del tallo. Para ello, la hoja que se iba a medir se envolvió con una bolsa de polietileno, plegándola cuidadosamente. Luego se envolvió con una lámina de papel aluminio. El objetivo del embolsado y la cobertura con aluminio fue mantener los estomas cerrados y evitar la transpiración para igualar el potencial hídrico en esta hoja con Ψ_{tallo}. La hoja se mantuvo embolsada y cubierta con aluminio por un mínimo 4 horas. Luego, se cortó de la planta y se midió siguiendo la misma metodología que para Ψ_L.

- Conductancia estomática ($g_\text{s}; \text{mmol H}_2\text{O m}^{-2} \text{s}^{-1}$), Transpiración ($E; \text{mmolH}_2\text{Om}^{-2} \text{s}^{-1}$), Temperatura de la hoja ($T_\text{L}; ^\circ\text{C}$), Presión atmosférica ($\text{Pa; hPa}$), Concentación de vapor de agua atmosférica ($e_\text{a}/\text{Pa; hPa}$): Éstas mediciones se tomaron con un analizador de gases Infrarrojo (CIRAS-2 PP Systems, Hertfordshire, R.U.) de círculo abierto, con una cubeta automática universal de hoja de área 2,5 cm² (PLC6 (U) CRS121, PP Systems Hertfordshire U.R.).

- Concentación de vapor saturado a la temperatura de la hoja (i.e. corresponde a la concentración de vapor en la hoja; $e_{sT(L)}$/Pa; hPa): Este valor se calculó mediante la ecuación
empírica de Teten

\[e_{ST(L)} = 6.11 \cdot \exp \left(\frac{17.502 \cdot T_L}{T_L + 240.97} \right) \]

que formaliza la relación entre el vapor saturado y la temperatura (Campbell y Norman, 1998).

- Conductancia hidráulica específica \((k_L; \text{mmol H}_2\text{O m}^{-2} \text{s}^{-1} \text{MPa}^{-1})\); Schultz, 2003). Primero, se obtuvo el dato de potencial de suelo \((\Psi_{\text{suelo}})\) a partir de la curva de capacidad hídrica y para la humedad de suelo de cada maceta, el mismo día en el que se midió el resto de las variables. Luego, midiendo la transpiración \((E)\) y el potencial hídrico foliar \((\Psi_L)\) a lo largo del mismo día, a intervalos de una hora entre mediciones, se calculó, por deducción de la ley de Van den Honert (Ec. 2), la \(k_L\) para cada momento del día: \(k_L = E / (\Psi_{\text{suelo}} - \Psi_L)\); donde E se mide en mmol m\(^{-2}\) s\(^{-1}\) y \(\Psi\) en MPa.

- Embolismo foliar y de tallo a lo largo del día (Emb., %): con la marcha diaria de los \(\Psi_L\), \(\Psi_s\) y con el modelo de regresión ajustado al fenómeno, (y los parámetros a, b y c de dicho ajuste para cada planta), se estimó el embolismo en el xilema de la hoja y en el tallo alcanzado a lo largo del día para cada planta.

3.2 Análisis de los datos:

Se analizó variable por variable mediante el análisis de la varianza para determinar si existían diferencias entre variedades o entre niveles de DH y para saber si había interacción entre genotipo (variedades) y ambiente (DH). Para esto se usaron los programas de computación Stat Graphics Plus (Statistical Graphics Corp.); StatSoft, Inc. (2003) y STATISTICA (data analysis software system) version6. Cuando hubo falta de homoscedasticidad se transformaron los datos para cumplir con el supuesto; mientras que en los casos en que las transformaciones no permitieron alcanzar la homogeneidad de varianza, se procedió con el análisis no paramétrico de los datos (prueba de Kruskal- Wallis). El modelo estadístico del ensayo correspondió a:

\[\hat{y}_{ij} = \mu + A_i + B_j + A x B_{ij} + \epsilon_{(ij)}; \]

Donde: \(A\) era el efecto de la variedad,

\(B\) era el efecto del tratamiento de riego

\(A x B\) era la interacción entre la variedad y el riego,

\(\epsilon_{(ij)}\) era el error implícito en el modelo.

La comparación de medias se realizó el análisis de Tukey.

Se ajustaron modelos de regresión curvilineal a las curvas de cavitation, al embolismo diario, al potencial hídrico y al cierre estomático con el software Lab Fit, (curve fitting program V7.2.47 (1999-2010), Wilton and Cleide P. Silva- DF/CCT/UFPB).
Para probar la hipótesis nº 1 de coincidencia del cierre estomático con el freno de los eventos de cavitation, se realizó la prueba de Chi cuadrado (χ^2). Para esto se construyó una tabla de contingencia con picos de g_s (momentos en los que el estoma empezaba a cerrarse) y Emb% para cada planta; y se registró el número de veces en que un pico de g_s ocurría concomitantemente a un pico de Emb%.
En todas las variables se calcularon la media, la varianza, desviaciones estándares y los errores estándar.

3.3 Modelo mecanístico, demostración formal:

A partir de las leyes físicas e hidráulicas del funcionamiento de la planta - o sea las leyes de Van den Honert y de Fick (Ec 2 y 3) - se construyó un modelo mecanístico con el que se obtuvo como “salida” el Emb (%), a partir de las variables (“entradas del modelo”) e_a, e_T, P_a, g_s, g_b, y Ψ_L. Esto permitió poner en evidencia el efecto de las variables hídricas de la planta, y probar la primera hipótesis.
4 Resultados

4.1 Respuesta de las plantas al déficit hídrico:

El déficit hídrico tuvo un efecto evidente sobre el Ψ_L de las plantas, a lo largo del día. Los tratamientos con déficit hídrico (DH), provocaron un Ψ_L significativamente más negativo que el de las plantas en capacidad de campo (CC), en casi todas las variedades. Esto se observó desde preamanecer y a lo largo del día, especialmente durante las horas de medio día y hasta la tarde. Una excepción resultó ser la variedad Syrah, que tuvo diferencias de Ψ_L entre CC y DH importantes en preamanecer y al medio día, pero presentó valores que no se diferenciaron durante el resto del día (Figura 12). Si bien se observó una clara tendencia a que Ψ_L era más negativo en el DH que en CC, se pudo probar estadísticamente que esas diferencias no fueron significativas para Syrah excepto en las horas indicadas. Las curvas de avance diario que se ajustaron por regresión tuvieron un R^2 > 0,8 y los parámetros comparados por ANOVA resultaron no ser diferentes (p > 0,05).
Figura 12: marcha diaria del potencial hídrico foliar (Ψ_L; MPa) de las variedades Chardonnay, Malbec, Syrah y Grenache. (DH: ——□—; CC: ——♦—) Valores promedios (n=3). Las barras indican el error estándar.

Tomando todas las variedades en conjunto, se pudo observar que el potencial hídrico foliar más negativo, considerado como el de medio día (Ψ_{md}), fue diferente entre tratamientos hídricos, ya que las plantas estresadas llegaron a valores más negativos (-1.03 MPa) que las plantas en capacidad de campo (-0.88 MPa; $p = 0.000$). Por otro lado, no se hallaron diferencias significativas en el Ψ_{md} entre variedades ($p = 0.095$). Tanto el Ψ_{md} como la interacción variedad*tratamiento hídrico tuvieron una significancia marginal, ya que resultó significativa para $\alpha = 0.1$, ($p = 0.095$ y $p = 0.073$; Tabla 2). Parecería que, en CC, Syrah tiende a mantener un Ψ_{md} más bajo que Grenache. Pero bajo DH, las respuestas se igualan (Figura 13).
Tabla 2: potencial hídrico foliar de medio día (Ψ_{md}) y conductancia estomática máxima (g_s máx.) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos a capacidad de campo (CC) y con déficit hídrico (DH). Letras distintas indican diferencias significativas para la prueba de Tukey, $p<0.05$.

<table>
<thead>
<tr>
<th>Variedades / Tratamientos</th>
<th>Ψ_{md}</th>
<th>g_s máx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay</td>
<td>-0.97</td>
<td>194.8</td>
</tr>
<tr>
<td>Grenache</td>
<td>-0.92</td>
<td>184.1</td>
</tr>
<tr>
<td>Malbec</td>
<td>-0.94</td>
<td>198.8</td>
</tr>
<tr>
<td>Syrah</td>
<td>-1</td>
<td>176.1</td>
</tr>
</tbody>
</table>

valor p (variedad) 0.095 0.507

CC -0.88 a 228.2 a
DH -1.03 b 147.8 b

valor p (tratamiento hídrico) 0.000 0.000

Valor p (variedad*tratamiento hídrico) 0.073 0.018

Figura 13: gráfico de interacción entre variedad y tratamiento hídrico para la variable potencial máximo alcanzado (Ψ_{md}). Las barras indican el intervalo de confianza para 95%.

El potencial hídrico de preamanecer (Ψ_{pd}), medido entre las 4 y las 5 h de la mañana, también fue significativamente diferente para los 2 tratamientos de riego ($p = 0.006$, Tabla 3). En este caso, se realizó un ANOVA de una vía, ya que al analizar el factorial no se cumplía con el
supuesto de homoscedasticidad; pero al considerar la variedad y el nivel de riego como un solo tratamiento, sí.

Si se considera que Ψ_{pd} muestra la recuperación nocturna de las plantas, luego de un día de haber sido sometidas a bajos Ψ_L y eventos de cavitación, su análisis cobra importancia. En este sentido, la variedad Grenache mostró una mayor capacidad de reparación, ya que el valor de Ψ_{pd} para las plantas de esta variedad bajo DH, no fue significativamente diferente al de las plantas de Chardonnay, Malbec y Syrah en capacidad de campo (CC).

Tabla 3: potencial de preamanc (\(\Psi_{pd}\), MPa) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos a capacidad de campo (CC) y con déficit hídrico (DH). Letras distintas indican diferencias significativas para la prueba de Tukey, \(p < 0.05\).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Grupos homogeneos (Tukey, 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gre CC</td>
<td>0,291 a</td>
</tr>
<tr>
<td>Cha CC</td>
<td>0,325 a</td>
</tr>
<tr>
<td>Sy CC</td>
<td>0,333 a</td>
</tr>
<tr>
<td>Ma CC</td>
<td>0,333 a</td>
</tr>
<tr>
<td>Gre DH</td>
<td>0,383 ab</td>
</tr>
<tr>
<td>Ma DH</td>
<td>0,433 bc</td>
</tr>
<tr>
<td>Sy DH</td>
<td>0,458 bc</td>
</tr>
<tr>
<td>Cha DH</td>
<td>0,500 c</td>
</tr>
<tr>
<td>Valor p</td>
<td>0,006</td>
</tr>
</tbody>
</table>

En ningún caso, ya sea considerando los tratamientos de déficit hídrico o las distintas variedades, se alcanzó un Ψ_L menor a -1,5 MPa, que como se vio resulta crítico en términos de alcanzar la cavitación catastrófica.

En cuanto a la conductancia estomática (g_s), todos los tratamientos con DH tuvieron g_s menores que los de CC a lo largo del día, pero la diferencia no fue significativa en la variedad Grenache, que mantuvo valores de g_s similares en ambos tratamientos de riego (figura 14). Si bien se observó una clara tendencia de que g_s fuera menor en el DH que en CC en todos los casos, estadísticamente, esas diferencias no fueron significativas en Grenache. Las curvas de avance diario que se ajustaron por regresión tuvieron un $R^2 > 0.8$ y los parámetros comparados por ANOVA resultaron no ser diferentes (\(p > 0.05\)).
Figura 14: marcha diaria de la conductancia estomática (gs) de la variedad Chardonnay, Malbec, Syrah y Grenache. Valores promedios de CC (●) y DH (□); n=3. Las barras indican los errores estándares.

Si analizamos la gs máxima del día, todas las variedades, excepto Grenache, presentaron gs máximos significativamente más altos en plantas CC (228 mmol H₂O m⁻² s⁻¹) que en las plantas DH (148 mmol H₂O m⁻² s⁻¹; Figura 15 y Tabla 2). Esto se refleja por la interacción entre genotipo (variedades) y el ambiente (niveles hídricos) que resultó significativa, (p=0.018; Tabla 2, Figura 15).
Figura 15: interacción entre variedad y tratamiento hídrico para la conductancia estomática máxima (g_{\text{max}}). CC (—), DH (----). Las barras denotan el intervalo de confianza para el 0,95.

4.2 Vulnerabilidad de las plantas a la cavitation:

Comparando los parámetros de las curvas de vulnerabilidad a la cavitation ajustadas a la función de crecimiento $\Delta k_H = a*(\exp(b*\Psi) - \exp(c*\Psi)) \quad - R^2 > 0,8$ en todos los casos (Anexo I)-, no se observaron diferencias significativas entre variedades ni entre tratamientos de riego (Tabla 4). Tampoco se hallaron diferencias significativas en Ψ_L a 50% de cavitation (Ψ_{50}) ni entre variedades, ni entre tratamientos de riego (Tabla 5). Esto significa que las curvas de cavitation para las plantas de este ensayo no fueron diferentes entre sí; o sea que para las condiciones de estrés alcanzadas en este estudio, no hubo aclimatación del tejido conductor xilemático frente al déficit hídrico.

Tabla 4: Parámetros de ajuste de las curvas de vulnerabilidad a la cavitation (Δk_H vs. Ψ) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (CC) y en condiciones de déficit hídrico (DH).

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay CC</td>
<td>10.75</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Chardonnay DH</td>
<td>19.5</td>
<td>13</td>
<td>18.3</td>
</tr>
<tr>
<td>Grenache CC</td>
<td>14</td>
<td>13.3</td>
<td>21.6</td>
</tr>
<tr>
<td>Grenache DH</td>
<td>21.6</td>
<td>16.3</td>
<td>21.3</td>
</tr>
<tr>
<td>Malbec CC</td>
<td>17</td>
<td>14</td>
<td>17.75</td>
</tr>
<tr>
<td>Malbec DH</td>
<td>16.6</td>
<td>15.6</td>
<td>15.3</td>
</tr>
<tr>
<td>Syrah CC</td>
<td>15.5</td>
<td>26.5</td>
<td>19</td>
</tr>
<tr>
<td>Syrah DH</td>
<td>16.2</td>
<td>20</td>
<td>14.4</td>
</tr>
<tr>
<td>Valor p (Kruskall Wallis)</td>
<td>0.855</td>
<td>0.399</td>
<td>0.369</td>
</tr>
</tbody>
</table>
Tabla 5: Potencial hídrico a 50% de cavitation (Ψ_{50}) en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (CC) y en condiciones de déficit hídrico (DH).

<table>
<thead>
<tr>
<th>Variedades y Tratamientos</th>
<th>Ψ_{50} (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay</td>
<td>-2,44</td>
</tr>
<tr>
<td>Grenache</td>
<td>-2,46</td>
</tr>
<tr>
<td>Malbec</td>
<td>-3,18</td>
</tr>
<tr>
<td>Syrah</td>
<td>-2,28</td>
</tr>
<tr>
<td>(Valor p variedad)</td>
<td>(0,306)</td>
</tr>
<tr>
<td>CC</td>
<td>-2,57</td>
</tr>
<tr>
<td>DH</td>
<td>-2,61</td>
</tr>
<tr>
<td>(Valor p DH)</td>
<td>(0,896)</td>
</tr>
<tr>
<td>(Valor p Var*DH)</td>
<td>(0,871)</td>
</tr>
</tbody>
</table>

La figura 16 muestra las curvas de cavitation (promedios de tratamientos) resultantes de los ajustes del modelo de regresión al fenómeno. En esta figura se puede observar que Grenache y Chardonnay en capacidad de campo mostraron una tendencia a ser más vulnerables que las mismas bajo déficit hídrico, a Ψ entre 0 y -0,75. Si se analizan las curvas de vulnerabilidad del Anexo I, se puede ver que en la variedad Chardonnay, las plantas CC tuvieron una tendencia mayor a cavitar que las plantas DH, pero sin diferencias significativas. La falta de diferencias significativas entre curvas de cavitation, se debió a la gran variabilidad observada en este fenómeno (Anexo I).

Más allá de las diferencias aparentes, lo importante es que, en el rango de valores de Ψ_L alcanzado por las plantas (-0,88 a -1,03 MPa; Tabla 2) las diferencias de Δk_H fueron menores.

![Figura 16: Curvas de vulnerabilidad del xilema a cavitar, promedio para cada tratamiento resultantes del ajuste del modelo de regresión y=a*(exp(b*x)-exp(c*x). ($R^2 > 80\%$ en todos los casos).](image-url)
4.3 Embolia en el xilema foliar vs. Relaciones hídricas, a lo largo del día:

Calculando los porcentajes de embolismo en el xilema foliar, a partir de las curvas de vulnerabilidad y de los Ψ_L medidos en cada caso, se pudo observar que las plantas nunca llegaron a niveles que pudieran haberse considerado catastróficos (cavitación 50%). Pero, sí se alcanzaron niveles de cavitación elevados; el nivel promedio máximo de cavitación en el xilema foliar fue de 23%.

Al analizar la embolia en preamanecer, se observó que todas las variedades y los tratamientos hídricos iniciaron el día con embolismos foliares de alrededor del 10%, indicando que existió una reparación de la función xilemática, pero que ésta no fue completa (Tabla 6).

El embolismo máximo en el xilema foliar, alcanzado a lo largo del día, no se diferenció entre las variedades ($p = 0.93$; Tabla 7).

Tabla 6: Porcentaje de embolia en preamanecer en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (CC) y en condiciones de déficit hídrico (DH).

<table>
<thead>
<tr>
<th>Variedades y Tratamientos</th>
<th>Emb μX(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay</td>
<td>12</td>
</tr>
<tr>
<td>Grenache</td>
<td>10</td>
</tr>
<tr>
<td>Malbec</td>
<td>12,8</td>
</tr>
<tr>
<td>Syrah</td>
<td>9</td>
</tr>
<tr>
<td>(Valor p variedad)</td>
<td>(0,86)</td>
</tr>
<tr>
<td>CC</td>
<td>10</td>
</tr>
<tr>
<td>DH</td>
<td>11,8</td>
</tr>
<tr>
<td>(Valor p Tratamiento hídrico)</td>
<td>(0,67)</td>
</tr>
<tr>
<td>(Valor p Variedad*Tratamiento)</td>
<td>(0,36)</td>
</tr>
</tbody>
</table>

Tabla 7: Porcentaje de embolia máxima alcanzada en el día en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (T) y en condiciones de déficit hídrico (DH).

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Emb máx (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay CC</td>
<td>23</td>
</tr>
<tr>
<td>Chardonnay DH</td>
<td>19</td>
</tr>
<tr>
<td>Grenache CC</td>
<td>22</td>
</tr>
<tr>
<td>Grenache DH</td>
<td>33</td>
</tr>
<tr>
<td>Malbec CC</td>
<td>16</td>
</tr>
<tr>
<td>Malbec DH</td>
<td>22</td>
</tr>
<tr>
<td>Syrah CC</td>
<td>25</td>
</tr>
<tr>
<td>Syrah DH</td>
<td>19</td>
</tr>
<tr>
<td>promedio</td>
<td>22,7</td>
</tr>
<tr>
<td>D.M.S</td>
<td>13</td>
</tr>
<tr>
<td>(Valor p Kruskall Wallis)</td>
<td>(0,93)</td>
</tr>
</tbody>
</table>
Como la embolia foliar dependía directamente del Ψ_L, ambas variables siguieron una marcha diaria similar –aunque de sentido contrario, ya que a menor Ψ_L mayor cavitación–, hasta el momento en que se alcanzó el Ψ_L mínimo (figura 17). Esto se cumplió en todos los casos observados (Anexo II).

Figura 17: Marcha diaria de las variables potencial hídrico foliar (ΨL) y embolia (Emb %). Valores promedios de Grenache, Syrah, Chardonnay y Malbec. ΨL de CC (—□—) ΨL de DH (—■—); Emb% CC (—●—) y Emb% DH (—○—). Las barras indican los errores estándares.

Debido a la ausencia de diferencias significativas en las curvas de vulnerabilidad entre variedades a lo largo del día (Emb%), en la Figura 17 sólo se muestra el gráfico de Emb% foliar y Ψ_L “promedio de variedades” para CC y DH. En el Anexo II se muestran las marchas diarias de Emb% y Ψ_L para cada caso. Allí se puede observar que siempre los mínimos de Ψ_L coincidieron con los máximos de Emb% foliar (24 casos totales, todas las repeticiones de todas las variedades y tratamientos de riego).

Para analizar el posible cierre de estomas como mecanismo limitador de la cavitación foliar, se estudiaron las marchas diarias de ambas variables, g_s y Emb (%). En este sentido, se confrontaron los picos de g_s con las mesetas de Emb% para todos los casos – todas las variedades y tratamientos de riego a lo largo del día – y se realizó una prueba de χ^2, para determinar si las mesetas de Emb% se relacionaban con los picos de g_s (Figura 18, Tabla 8). Se consideró pico de g_s cada momento en que un g_s antecede a otro g_s menor, lo que indica el inicio del cierre estomático. Se consideró meseta de Emb% cada momento en que el Emb% foliar no era superado por un Emb% foliar mayor en el momento siguiente. Esta prueba demostró que no había concordancia suficiente entre los picos de g_s y las mesetas de Emb% foliar como para adjudicarle, solamente a g_s, el rol limitador de las cavitaciones (Tabla 8; p
0,05). Esto significa que el cierre estomático no provocó en forma directa la estabilización de la embolia en el xilema foliar, esto también puede observarse gráficamente en el Anexo III.

Tabla 8: análisis de χ^2 de la coincidencia de picos de g_s y mesetas de Emb%, analizados en las curvas de marchas diarias de ambas variables. Nº de picos = 49. Nº de grados de libertad $n-1 = 2-1=1$ (se realiza corrección de Yates).

<table>
<thead>
<tr>
<th>OBS</th>
<th>ESP</th>
<th>χ^2</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>49</td>
<td>7.760204082</td>
<td>0,05</td>
</tr>
</tbody>
</table>

$\chi^2 > \chi^2_{1} = 7.76 > 3.84; se rechaza la Ho.$

Figura 18: Marchas diarias de la conductancia estomática g_s CC (◊) y DH (●) y de la embolia foliar Emb% CC (--□--) y DH (---■---). Valores promedios DE Chardonnay, Grenache, Malbec y Syrah para los tratamientos de riego CC y DH. Las barras indican los errores estándares.

4.4 Explicación de un posible mecanismo limitador de la embolia xilemática foliar:

Debido a que g_s no mostró tener un efecto directo sobre la cavitation como se hipotetizó, se decidió analizar la evolución de la conductancia hidráulica específica de la planta (k_L), ya que es una variable que podría haber incidido sobre las posibilidades del estoma para limitar la embolia. Esto, debido a que ambas conductancias están en línea en el circuito del flujo de agua, pero una - k_L- limita la oferta, y la otra -g_s - limita la demanda en la hoja. De hecho se sabe que la embolia afecta la k_L provocando una disminución de la misma.
En el análisis de las marchas diarias (Figura 19) se vio que k_L aumentaba a lo largo de la mañana, aún estando en parte disminuida por la embolia creciente. En este estudio, k_L llegaba a un máximo casi 3 horas después que el Emb% alcanzaría su propio máximo. Es interesante detenerse en esto, ya que aunque la planta sufre déficit hídrico creciente (i.e., tiene Ψ_L cada vez más negativos), y por lo tanto niveles de embolia crecientes, k_L no se ve afectada sino hasta 3 horas después de alcanzado el nivel de embolia máximo. Debe tenerse en cuenta, para entender esto, que a lo largo de la mañana existen 2 fuerzas que modifican la k_L, el Emb% que la reduce, y la apertura de los canales de agua de la raíz (acuaporinas: proteínas hidrofóbicas que forman canales de agua en la endo y exodermis de la raíz), que la aumentan (Vandeleur et al., 2009).

Figura 19: Marcha diaria de conductancia hidráulica específica k_L CC (◊), DH (■) y la embolia Emb% CC (□) y DH (■). Valores promedios. Las barras indican los errores estándares.

Con respecto a la k_L máxima alcanzada en el día, se observó que fue significativamente diferente entre las variedades ($p = 0.000$) y entre los tratamientos hídricos ($p = 0.000$), siendo mayor para CC que para DH. Sin embargo, no existió interacción entre variedades y niveles de DH (Tabla 9). Las variedades con mayor k_L máxima fueron Malbec y Chardonnay (7,08 y 6,93 mmol H$_2$O m$^{-2}$ s$^{-1}$ MPa$^{-1}$) y la menos eficiente en conducción fue Syrah (4.79 mmol H$_2$O m$^{-2}$ s$^{-1}$ MPa$^{-1}$; tabla 9).
Tabla 9: Conductancia hidráulica específica máxima ($k_L \text{max}$), en 4 variedades de vid (Chardonnay, Grenache, Malbec y Syrah) testigos sin estrés (T) y en condiciones de déficit hídrico (DH). Letras distintas indican diferencias significativas para el test de Tukey, $p < 0.05$.

<table>
<thead>
<tr>
<th>Variedades y Tratamientos</th>
<th>$k_L \text{max}$ (mmol H$_2$O m$^{-2}$s$^{-1}$MPa$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay</td>
<td>6,93 a</td>
</tr>
<tr>
<td>Grenache</td>
<td>5,81 ab</td>
</tr>
<tr>
<td>Malbec</td>
<td>7,08 a</td>
</tr>
<tr>
<td>Syrah</td>
<td>4,79 b</td>
</tr>
<tr>
<td>(Valor p variedad)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>CC</td>
<td>7,50 a</td>
</tr>
<tr>
<td>DH</td>
<td>4,80 b</td>
</tr>
<tr>
<td>(Valor p Tratamiento hídrico)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>(Valor p Variedad*Tratamiento hídrico)</td>
<td>(0,096)</td>
</tr>
</tbody>
</table>

Pero entonces, si aparentemente g_s no limita el Emb%, y k_L tampoco muestra ninguna relación directa con el fenómeno ¿Qué es lo que frena el aumento de la cavitation foliar y la disminución del Ψ_L? ¿Por qué las plantas dejan de cavitar en determinado momento del día? Para intentar explicar estas incógnitas se diseñó un modelo que permitiera dilucidar el mecanismo de limitación de la embolia y demostrar formalmente una nueva hipótesis, emergente de los resultados obtenidos hasta el momento. Esta hipótesis postula que g_s por sí sola no puede frenar la embolia, sino que es la interacción entre g_s y k_L la responsable de proteger el xilema frente a la cavitation.

4.5 Modelo mecanístico:

Para entender el mecanismo de acción conjunta de g_s y k_L limitando la embolia se desarrolló un modelo de funcionamiento hídrico que tiene como “entradas” a g_s, Ψ_L, k_L y la temperatura de la hoja T_L, y como “salida” el porcentaje de embolia (Emb%). Matemáticamente, una típica curva de embolia de la vid puede ajustarse a una función definida por partes (Ecuaciones 1 y 2). En el primer tramo de la función, cuando el Ψ_L disminuye por aumento del déficit hídrico, hasta un determinado valor, el Emb% depende linealmente de Ψ_L, y crece hasta que se alcanza el Emb% máximo –*i.e.* 100%–. Luego, a Ψ_L más bajos, el nivel de cavitation se mantiene constante en 100%.
A la vez, y como se vio en la Introducción, el \(\Psi_L \) depende de la transpiración \(E \) (Ley de Van den Honert, Ecuación 4) y ésta, a su vez, depende de \(g_s \) (Ley de Fick, Ecuación 5).

\[
\Psi_L = \Psi_{soil} - \frac{E}{k_L}
\]

(4)

\[
E = \frac{(e_{sT(L)} - e_a)}{P_a \cdot (g_s^{-1} + g_b^{-1})}
\]

(5)

Sustituyendo (5) en (4) se obtiene (6),

\[
\Psi_L = \Psi_{soil} - \frac{e_{sT(L)} - e_a}{P_a \cdot (g_s^{-1} + g_b^{-1}) \cdot k_L}
\]

(6)

Luego por sustitución de (6) en (1) se obtiene como “salida” del modelo la embolia sufrida por la planta expresada como \(Emb\% \) (Ecuación 7), para el tramo de la función en que la embolia depende del \(\Psi_L \).

Modelo:

\[
Emb\% = a + b \cdot \left(\Psi_{soil} - \frac{e_{sT(L)} - e_a}{P_a \cdot (g_s^{-1} + g_b^{-1}) \cdot k_L} \right)
\]

(7)

La ecuación (7) prueba que la embolia depende de \(g_s \) pero no en una forma directa sino a través de la interacción de esta variable con otras, como la temperatura de la hoja, la conductancia de la capa límite (que varía con la velocidad del viento) y \(k_L \) que, depende de la actividad de las acuaporinas de la raíz (Vandeleur et al., 2009). Cambiando los valores de las variables en el modelo, se puede entender que no es necesario un cierre completo del estoma.
para limitar el embolismo. Sólo se necesita que se produzca una disminución de \(g_s \), manteniendo las otras variables constantes. Así, si disminuye \(g_s \) a la mitad, la embolia disminuye, en promedio, un 35% (Figura 20).

Figura 20: Marchas de \(g_s \) en plantas no estresadas (CC) y con \(g_s \) disminuida a la mitad (A) utilizando el modelo; y marchas de la embolia (Emb\%) para ambos casos (B).

Por otro lado, se observó que al aumentar \(k_L \) al doble, la embolia disminuye, en promedio, un 40%. O sea que la relación entre \(k_L \) y la embolia es inversa, \(i.e., \) \(a > k_L; < \) Emb\%, figura 21).

Figura 21: Marchas de \(k_L \) en plantas no estresadas (CC) y con \(k_L \) duplicada (A) utilizando el modelo; y marchas de la embolia (Emb\%) para ambos casos (B).

Al modificar simultáneamente los valores de ambas variables en el modelo, es decir, disminuyendo un 50% \(g_s \) y aumentando un 50% \(k_L \), para minimizar la diferencia entre \(g_s \) y \(k_L \), se notó que el efecto sobre la embolia era muy importante. En este caso, la embolia disminuyó abruptamente (56% en promedio; Figura 22). Al contrario, cuando se aumentó esta diferencia entre conductancias, la cavitation aumentó significativamente.
Figura 22: Marchas del Emb% para plantas no estresadas (CC) y para plantas con g_s disminuida en un 50% y k_L duplicada, utilizando el modelo.

El modelo, de todas maneras, no explica la falta de correlación entre los momentos en que se producen los picos de g_s –o de k_L–, con los momentos en que la embolia se paraliza. Podría ser que, más que el efecto individual de cada conductancia (g_s o k_L), importara el efecto que la relación entre ambas variables genera.

Debe tenerse en cuenta que el embolismo depende de la relación entre E y k_L –de acuerdo con la Ley de Van den Honert, Ecuación 4; y el modelo, Ecuación 7. Si analizamos la relación entre E y k_L en los datos experimentales, podemos observar que, en todos los casos, desde el preamanecer y hasta las 11:00 h, ambas variables aumentaban, pero a ritmos diferentes –E aumentaba más que k_L. Luego de las 11:00 h, también en todos los casos, las diferencias entre E y k_L se hacían constantes, permaneciendo así por el resto del día (figura 23 A, Anexo IV). Era en ese momento del día –a las 11:00 h, a partir del cual estas diferencias se hacían constantes–, que la embolia se estabilizaba y dejaba de aumentar (Figura 23 B). Esto se observó en todos los casos, y, teniendo en cuenta que E depende de g_s (Ecuación 5), surge la pregunta sobre qué hacía que a partir de las 11:00 h las diferencias entre E y k_L se mantuvieran constantes y no aumentara el nivel de embolia.
Figura 23: A: Relación entre la transpiración E (■) y la conductividad hidráulica k_L (□). B: Marcha de Emb\% (□) y de E/k_L (■). Siempre que el cociente E/k_L se estabiliza, la embolia responde de igual manera (B). Promedio de las plantas Chardonnay CC.

Con respecto a esto, observando todos los casos (i.e., todas los tratamientos y todas las repeticiones), se probó que g_s y k_L estaban fuertemente correlacionadas a lo largo de todo el día ($R = 0.87$, $p = 0.000$). Pero la relación g_s vs. k_L era distinta a la mañana temprano, antes de las 11:00 h (cuando el embolismo estaba creciendo), que durante el resto del día (cuando el embolismo se frenaba; Figura 24). Luego de las 11:00 h, la diferencia entre ambas disminuía, pues la pendiente de la correlación también se reducía. Como se ve en el modelo, los valores que toman g_s y k_L, una con respecto a la otra, son importantes para limitar la embolia.

![Graph showing correlation between gs and kL](image)

Figura 24: Relación entre g_s y k_L para todos los tratamientos y todas las repeticiones.
Dada la aparente importancia de la diferencia entre \(g_s \) y \(k_L \), y la semejanza que guardan ambas variables en su marcha a lo largo del día, se estudió si las diferencias, más que las variables originales, podían explicar la limitación de la embolia. Para esto se creó una variable de cálculo, llamada \(\Delta g_s \), la cual se obtuvo restándole a \(g_s \) 22 veces \(k_L \) (Ecuación 8). Esta variable –que tiene las mismas unidades de \(g_s \)– expresa el grado de acople entre ambas conductancias. Se pudo observar que el Emb% se estabilizaba casi siempre en forma simultánea con la ocurrencia de caídas de \(\Delta g_s \), tanto en plantas CC como en plantas DH (Figura 25, Anexo V).

\[
\Delta g_s = g_s - 22 \text{MPa} \cdot k_L
\]

(8)

Figura 25: Marcha diaria del Emb% (◊) y de \(\Delta g_s \) (●) para el promedio de las plantas CC (A), y para el promedio de las plantas DH (B). Observar que a las 11:00 h, cuando se estabiliza el Emb%, ocurren picos de \(\Delta g_s \).

Para probar estadísticamente si \(\Delta g_s \) se asociaba a la limitación del embolismo diario, como aparentemente se observaba, se realizó una prueba de \(\chi^2 \) (Tabla 10). Esta vez, contrastando los picos de \(\Delta g_s \) y las mesetas del Emb%. Al analizar caso por caso los eventos de caída de \(\Delta g_s \) (picos) con respecto a lo que ocurría con la embolia a lo largo del día, se aceptó la \(H_0 \) de que siempre que ocurrió una estabilización del Emb%, había ocurrido simultáneamente un pico en \(\Delta g_s \).

Tabla 10: análisis de \(\chi^2 \) de la coincidencia de picos de \(\Delta g_s \) y mesetas de Emb%, analizados en las curvas de marchas diarias de ambas variables. N\(\text{o} \) de picos de \(\Delta g_s \) = 57. N\(\text{o} \) de grados de libertad \(n-1 = 2-1 = 1 \) (se realiza corrección de Yates).

<table>
<thead>
<tr>
<th>Coincidencias</th>
<th>Observadas</th>
<th>Esperadas</th>
<th>(\chi^2 = ((o-e)^2)/e)</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coacciones</td>
<td>43</td>
<td>57</td>
<td>3,68859649</td>
<td>0,05</td>
</tr>
</tbody>
</table>

\(H_0 \): Observadas = Esperadas \(\chi^2 < \chi^2_1 = 3.68 < 3.84 \); se acepta \(H_0 \)
Así, se probó estadísticamente que el acople entre \(g_s \) y \(k_L \) es responsable de controlar la embolia foliar en las plantas. Cuando \(\Delta g_s \) comienza a disminuir el embolismo se paraliza, aún en las situaciones paradógicas en que \(g_s \) continúa creciendo (Anexo III; plantas 12, 22, 31, 38 y 51). El mecanismo sería así: a la mañana temprano, a medida que aumenta la demanda evaporativa, \(g_s \) no puede acoplarse muy bien con \(k_L \) y \(\Delta g_s \) aumenta. Esto provoca un aumento de la embolia. Luego, a media mañana \(g_s \) logra acoplarse con \(k_L \), (aunque los estomas se siguen abriendo, pero a un ritmo menor). Entonces \(\Delta g_s \) comienza a disminuir, provocando que la embolia se detenga. Este fenómeno puede explicar por qué existe un defasaje de hasta 3 horas, en algunos casos, entre el máximo del nivel de embolia y el máximo \(g_s \).

Ahora la incógnita que surge es: ¿de qué variables ambientales – en especial las que figuran en las leyes de Van den Honert y de Fick- depende este acople entre conductancias (\(\Delta g_s \))?

Para responder a esta nueva incógnita se analizaron las correlaciones entre todas las variables ambientales (y sus tasas de variación horaria) con \(\Delta g_s \), considerando todos los casos y todas las horas del día (Tabla 11). Se pudo observar que \(\Delta g_s \) se correlacionó significativamente con la radiación fotosintéticamente activa (PPFD), la temperatura del aire (\(T_a \)), el déficit de presión de vapor (dpv). También se correlacionó significativamente con las tasas de variación horaria de: la densidad de vapor saturada a la temperatura de la hoja (\(\Delta e_{s(TL)}/Pa \)), el PPFD (\(\Delta PPFD \)), la presión de vapor del aire (\(\Delta e_{a} \)), la temperatura del aire (\(\Delta T_{a} \)), la presión atmosférica (\(\Delta Pa \)), la presión parcial de vapor saturada a la temperatura de la hoja (\(\Delta e_{(TL)} \)) y el dpv (\(\Delta dpv \)). Considerando todos los casos en conjunto, aunque las correlaciones fueron significativas, sus valores fueron bajos (< 0,37). Pero, estos valores bajos resultan engañosos ya que el análisis de los casos individuales, arrojó correlaciones más altas. Esto es especialmente cierto para la variable \(\Delta e_{s(TL)}/Pa \), íntimamente relacionada con la fuerza impulsora de la transpiración en la hoja (Ley de Fick, Ecuación 5).

<table>
<thead>
<tr>
<th>(\Delta g_s)</th>
<th>PPFD</th>
<th>(T_a)</th>
<th>dpv</th>
<th>(\Delta e_{s(TL)}/Pa)</th>
<th>(\Delta PPFD)</th>
<th>(\Delta e_{a})</th>
<th>(\Delta T_{a})</th>
<th>(\Delta Pa)</th>
<th>(\Delta e_{s(TL)})</th>
<th>(\Delta dpv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0,28</td>
<td>-0,32</td>
<td>-0,37</td>
<td>0,31</td>
<td>0,25</td>
<td>0,33</td>
<td>0,3</td>
<td>0,3</td>
<td>0,31</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>Valor p</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,0000</td>
<td>0,0005</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0001</td>
<td>0,0000</td>
<td>0,0002</td>
</tr>
</tbody>
</table>

PPFD: Densidad de flujo de fotones fotosintéticamente activos (\(\mu \text{mol} m^{-2} s^{-1} \)); \(T_a \): Temperatura del aire (\(^{\circ}\text{C} \)); dpv (hPa): déficit de presión de vapor; \(\Delta e_{s(TL)}/Pa \) (hPa/hora): tasa de variación horaria de densidad de vapor saturada a la temperatura de la hoja; \(\Delta PPFD \) (\(\mu \text{mol} m^{-2} s^{-1}/\text{hora} \)): tasa de variación horaria de PPFD; \(\Delta e_{a} \) (hPa/hora): tasa de variación horaria de de la presión de vapor del aire; \(\Delta T_{a} \) (\(^{\circ}\text{C}/\text{hora} \)): tasa de variación horaria de de la temperatura del aire; \(\Delta Pa \) (hPa/hora): tasa de variación horaria de de la presión atmosférica; \(\Delta e_{s(TL)} \) (hPa/hora): tasa de variación horaria de de la presión parcial de vapor saturada a la temperatura de la hoja y \(\Delta dpv \) (hPa/hora): tasa de variación horaria del dpv.
Al graficar la marcha diaria de Δgₛ y de Δeₛ(TL)/Pa se vio que, en muchos casos, las marchas son similares, indicando que cuando comienza la caída de la tasa horaria de la fuerza impulsora de la transpiración, comienza a bajar Δgₛ (Figura 26). O sea, se da una coincidencia entre picos de Δeₛ(TL)/Pa y picos de Δgₛ.

Figura 26: A- Marchas diarias y Δgₛ (●) y de la tasa de cambio de eₛ(TL)/Pa (□) Se puede notar la similitud en las marchas de las curvas. Promedio de las plantas Chardonnay CC.

En algunos casos, la correlación entre Δgₛ y Δeₛ(TL)/Pa puede ser muy alta (en un Syrah DH, R = 0,91; en otro Syrah DH, R = 0,81; en todos los Malbec DH y CC, R > 0,6 y en un Grenache DH, R = 0,87; Figura 27 A). En otros casos (todos los Chardonnay DH y CC, y algunas plantas de Grenache y Syrah, DH y T), las correlaciones resultaban bajas debido a que, en general el pico de Δeₛ(TL)/Pa estaba adelantado en una hora con respecto al pico de Δgₛ (Figura 27 B).

Figura 27: Marcha diaria de Δgₛ (— ● —) y Δeₛ(TL)/Pa (— □ —), para una planta Syrah DH, R = 0,91 (A); y para una planta de Chardonnay con picos defasados, R= 0,1 (B).
4.6 Embolia en el xilema de los tallos vs. Relaciones hídricas, a lo largo del día:

En un lote de plantas paralelo a las del ensayo, y de las mismas variedades, se observó que el potencial hídrico de tallo (Ψ_S) dependía del Ψ_L. El conjunto de datos de Ψ_L y de Ψ_S, obtenidos a lo largo de todo el día no se correlacionó lo suficiente como para poder obtener un solo ajuste diario. Pero, se pudo obtener una ecuación lineal para cada hora, considerando todas las variedades en conjunto, que relacionaba ambas variables con un ajuste aceptable (R^2 entre 0,63 y 0,88; Tabla 12).

A partir de las ecuaciones de la tabla 12, se obtuvieron por cálculo, los Ψ_S para cada tratamiento hídrico considerado en el estudio (promedios de CC y DH). Luego, y a través de la curva de vulnerabilidad, se obtuvieron los niveles de embolia alcanzados en el xilema de los tallos para cada hora del día (Figura 28).

Tabla 12: Ecuaciones de ajuste lineal entre Ψ_L y Ψ_S para las diferentes horas a lo largo del día.

<table>
<thead>
<tr>
<th>Hora del día</th>
<th>Ecuaciones</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 a 9:59 h</td>
<td>Ψ_S = 0.8492* Ψ_L -0.0683</td>
<td>0.7004</td>
</tr>
<tr>
<td>10 a 11:59 h</td>
<td>Ψ_S = 0.6051* Ψ_L -0.1569</td>
<td>0.6331</td>
</tr>
<tr>
<td>12 a 14:59 h</td>
<td>Ψ_S = 1.4082* Ψ_L +0.5964</td>
<td>0.7482</td>
</tr>
<tr>
<td>> 15 h</td>
<td>Ψ_S = 1.2194* Ψ_L +0.3377</td>
<td>0.8861</td>
</tr>
</tbody>
</table>

Figura 28: Marchas diarias del Emb% de hoja (▪), Emb% de tallo (□), Ψ_L (▲) y Ψ_S (Δ). Promedio de plantas CC (A) y promedio de plantas DH (B).
Debido a que el embolismo en el tallo dependía de Ψ_S –de la misma manera que Emb% foliar dependía de Ψ_L–, (Figura 28), ambas variables, Ψ_S y Emb% tallo, siguieron una marcha diaria similar –aunque de sentido contrario. El máximo de embolia de tallo fue de 23% para DH y 20% para CC en términos de pérdida de conductancia hidráulica. En el tratamiento CC el tallo sufrió una embolia levemente menor a la de la hoja (2%). Sin embargo, prácticamente no existieron diferencias entre las embolias máximas de tallo y de hoja en el tratamiento DH. Por otro lado, se vio que el máximo de embolia de tallo alcanzado en el día sucedió a las 12 h. – con una hora de atraso con respecto a la ocurrencia de la embolia foliar.
5 Discusión:

Los valores de Ψ_L y g_s, inferiores en plantas con déficit hídrico, con respecto a las plantas en capacidad de campo que se observaron en el experimento, concuerdan con lo reportado por otros autores, tanto en vid, como en otras especies (Tardieu et al., 1998; Franks et al., 2007; Schultz y Matthews, 1988; Schultz, 2003; Coehard et al., 2002; McDowell et al., 2008; Correia et al., 1995, Lovisolo et al., 2008, Lovisolo et al., 2010; Salleo et al., 2000, Chaves et al., 2010). Estas diferencias fueron notorias prácticamente en todas las variedades, si bien el tratamiento de déficit hídrico puede considerarse que sólo fue de una intensidad moderada. Los Ψ_{PD} y Ψ_{MD} que alcanzaron los tratamientos estresados (e.g., Ψ_{PD} -0,5 MPa para Chardonnay DH ó Ψ_{MD} -1 MPa para Syrah DH) no fueron lo suficientemente bajos como para considerarlos propios de un estrés severo (Schultz y Matthews 1988; Schultz 2003; Chouzouri y Schultz, 2005, Loviso et al., 2008; Chaves et al., 2010). Por esto no se alcanzó, en ningún caso, valores de Ψ_{MD} inferiores a -1,5 MPa, que se suponían como catastróficos para la vid, y que podían implicar la pérdida del 50% de conductividad hidráulica (Salleo y Lo Gullo, 1989). Por otro lado, el potencial bajo el cual las plantas hubieran alcanzado el 50% de cavitation, en este estudio, resultó mucho más bajo que -1,5 MPa (de entre -2 y -3 MPa). Puede considerarse que, las vides con déficit hídrico vivieron en condiciones de estrés hídrico moderado durante 2,5 meses y al final del ensayo, tenían niveles de turgencia compatibles con el mantenimiento de todos sus órganos foliares, habían perdido alrededor del 20% de la conductividad hidráulica y los estomas no se habían cerrado completamente. En el estudio de Alsina et al., (2007), las plantas bajo una restricción hídrica que ellos consideraron severa, llegaron hasta 70% de pérdida de conductividad, con estomas completamente cerrados.

Aunque el estrés hídrico provocó diferencias en Ψ_L a lo largo del día en Syrah, se vio que solamente el Ψ_{MD} y el Ψ_{PD} se diferenciaron significativamente, entre los tratamientos con y sin déficit hídrico, lo que indicaría un comportamiento de tipo isohídrico durante el resto del día, en contradicción con lo observado antes en esta variedad (Schultz, 2003). Por otro lado, Grenache no disminuyó su g_s cuando sufrió déficit hídrico, indicando un comportamiento de tipo anisohídrico, también en contradicción con lo observado antes en esta variedad (Schultz, 2003). Estas anomalías, sin embargo, no contradicen los resultados de Chouzouri y Schultz (2005), que no hallaron un comportamiento claro entre variedades, y no pudieron corroborar que Syrah fuera una variedad anisohídrica, ni Grenache una variedad netamente isohídrica. Si bien, Grenache no se comportó como isohídrica, en nuestro estudio, sí mostró que es una variedad más resistente a sequía, pues en plantas con déficit hídrico alcanzó valores de Ψ_{PD} que no fueron significativamente diferentes a los de las otras variedades en capacidad de
campo. Este resultado sí concuerda con la bibliografía, que señala a Grenache como una variedad muy resistente a sequía (Schultz 2003). Dados los resultados observados, y sumados a los publicados por otros autores (ver tabla 1, Chaves et al., 2010) se considera que la clasificación de variedades de vid en isohídricas o anisohídricas no es del todo rigurosa. De todas maneras, las diferencias observadas en los comportamientos de Grenache y Syrah, con respecto a lo observado por otros autores, pueden haberse debido a que las plantas estaban cultivadas en macetas, en invernáculo, o a que el nivel del déficit hídrico provocado no fue tan severo. En relación a esto, otros autores mostraron que los resultados de las investigaciones, en variedades de vid, pueden parecer contradictorios o poco claros, si no se consideran las condiciones de trabajo. Una misma variedad, acusa comportamientos diferentes, según las condiciones ambientales en las que se la estudia, (i.e., condiciones climáticas, niveles hídricos edáficos, potenciales hídricos alcanzados, y dependiendo de si está cultivada a campo o en maceta; Chaves et al., 2010; quien cita a Williams y Baeza, 2007; Chalmers 2007; Poni et al., 2007; Medrano et al., 2003; Lovisolo et al., 2010; Santesteban et al., 2009).

Las curvas de vulnerabilidad a cavitation obtenidas en el ensayo, no fueron diferentes entre tratamientos, y por lo tanto no puede considerarse que, para el nivel de déficit hídrico impuesto, haya existido una aclimatación del sistema conductor xilemático, como consecuencia del estrés hídrico. Con esto, se rechazan las Hipótesis 2 y 3 que se habían planteado, y que postulaban que, “algunas variedades de vid, cuando crecen bajo restricción hídrica, se aclimatan mejor desarrollando un sistema conductor menos vulnerable a cavitación” y que las “variedades originadas en climas áridos están más adaptadas que las originadas en climas húmedos, resintiendo mejor la cavitation”. Es posible que las diferencias entre variedades no se evidenciaran en este trabajo porque no se alcanzaron niveles de estrés suficientemente severos como para generar respuestas de aclimatación del xilema. Podría considerarse que bajo déficit hídrico severo sí podrían evidenciarse diferencias. Alsina et al. (2007) observaron vulnerabilidades a cavitation diferentes (Ψ_{50}) entre Grenache y Chardonnay, cuando crecieron bajo estrés natural en clima Mediterráneo. Con respeto a la posibilidad de discriminar diferencias en la vulnerabilidad a cavitation, debe tenerse en cuenta que esto es bastante difícil, debido a que el fenómeno posee una gran variabilidad intrínseca. En el estudio pudo comprobarse por ejemplo, que Ψ_{50} tuvo un coeficiente de variación del 28% en promedio, para las repeticiones de los distintos tratamientos (variedad x déficit hídrico). Esto concuerda con lo observado por otros autores en vid y en otras especies, (Tyree et al., 1993; Sperry y Saliendra, 1994; Tyree y Zimmermannn, 2002; Cochard et al.,
Con respecto al máximo de cavitation diaria, las plantas de vid alcanzaron un nivel muy elevado (alrededor de 25% de pérdida de conductividad hidráulica) comparado con los observados en otras especies (10% en promedio, en diversos forestales; Nardini y Salleo, 2000; Nardini et al., 2000). Esto puede deberse, probablemente a que la vid es una liana, que tiene vasos xilemáticos anchos para maximizar la conductancia hidráulica, y esto tiene un costo en vulnerabilidad a cavitation. De hecho, las curvas de cavitation observadas en vid en este trabajo y en otros (Alsina et al., 2007) comienzan abruptamente, sin ningún plateau inicial como el que se observa en otras especies forestales (e.g., Ceanothus megacarpus; Juniperus virginiana; Rizophora mangle; Acer saccharum; ver figura 4; Tyree y Zimmermann, 2002).

Por otro lado, compatible con los altos niveles de cavitation mencionados, se ha observado que la vid posee un alto nivel de reparación xilemática, que logra mediante presión radical (Lovisolo et al., 2006; Lovisolo et al., 2008). Si analizamos la embolia de preamanecer calculada en este ensayo, vemos que todas las variedades y los tratamientos hídricos iniciaron el día con embolias de alrededor del 10%. Esto es compatible con la posibilidad de que las plantas de vid tengan un mecanismo para reparar, durante la noche, los vasos cavitados en el día.

Con respecto al punto central de este estudio, que se refiere al control estomático del embolismo, no se halló correlación entre disminuciones de gs y la detención de la embolia, por lo que debe rechazarse la Hipótesis 1 que decía que, “vides sometidas a déficit hídrico disminuyen gs para evitar sufrir cavitaciones catastróficas”. Este resultado puede traducirse en que no se halló correlación entre disminuciones diarias de gs y la detención de la caída de ΨL (de lo que depende la detención de la cavitation). Correia et al. (1995) y Schultz (2003) ya habían observado en vid, una correlación muy baja entre gs y ΨL. Pero, en este estudio se observó que la embolia ciertamente sí se paraliza, a una determinada hora del día, coincidente con la detención de la caída de ΨL, por lo que aparentemente existe la activación de un mecanismo protector.

A través del modelo mecanístico que se ideó, se pudo demostrar que el embolismo efectivamente depende de gs, pero no de manera exclusiva, sino que también depende de otras variables fisiológicas propias de la planta (la vulnerabilidad a cavitation y kL); y de condiciones ambientales (la diferencia de concentraciones de vapor entre la hoja y la atmósfera, y la conductancia de la capa límite). En el estudio gs y kL estuvieron íntimamente asociadas (R = 0,87). A través del modelo, se pudo demostrar que la detención diaria del
embolismo tenía más que ver con variaciones de gs en su íntima relación con las variaciones de kL, que con su propia disminución. Esta estrecha relación entre ambas variables ha sido observada antes en vid y otros forestales (Sperry y Pockman, 1993; Mencuccini y Comstock 1999; Hubbard et al., 2001; Schultz, 2003). Esto evidencia que gs no es la única variable “controladora” del nivel de cavación alcanzado en los vasos; que gs responde a variaciones de kL; y que estas dos variables interactúan para controlar la embolia en la planta. Aparentemente kL y gs estarían relacionadas porque, los estomas operan en condiciones límites, que permiten fotosintetizar y al mismo tiempo evitar la deshidratación (Chaves et al., 2003). Consecuentemente, gs debe responder a kL, ya que cambios en kL influencian el estatus hídrico de la planta, especialmente el estatus de la hoja (Hubbard et al., 2001). Por lo tanto, el efecto de gs como principal freno de la embolia, atribuido por algunos autores, podría relacionarse con que ambas conductancias estén fuertemente coordinadas (Sperry y Pockman, 1993, Mencuccini y Comstock 1999, Nardini y Salleo, 2000, Lovisolo et al., 2010). Las observaciones efectuadas en el presente estudio no concuerdan con lo observado en otros forestales, donde el cierre estomático se asoció a una más estricta limitación de la cavación (permitiendo a lo sumo cavaciones de alrededor del 10%, Nardini y Salleo, 2000). Es posible que el hecho de que la disminución de gs no sea el principal freno de la embolia en la vid, pueda deberse a que, en esta especie, la curva de cavación no presenta, como ya se vio, una meseta inicial. Esto significa que, como la vid cavita rápidamente, aún a Ψ altos, el estoma se cierra cuando ese nivel de embolia es muy superior al que ocurre en otras especies en las cuales la lenta embolia inicial (por presencia de Plateau inicial en la curva) permite que el estoma ya esté cerrado antes de alcanzar cavaciones importantes.

Bajo el contexto de los descubrimientos efectuados, se reformuló la hipótesis inicial que decía que vides sometidas a déficit hídrico disminuyen gs para evitar sufrir cavaciones catastróficas, afirmándose que es la relación entre gs y kL la responsable de controlar la embolia. La relación entre gs y kL requirió, en nuestro estudio, generar una nueva variable, Δgs, que representa este acople entre las conductancias. Esta nueva variable, Δgs resultó ser la responsable del freno de la embolia, aceptándose la hipótesis alternativa. En este estudio, se observó que el acople entre las conductancias (i.e., Δgs) es menor en la mañana temprano y aumenta a medida que gs varía a causa de los efectos que las variables ambientales provocan sobre ella. Luego, cuando gs alcanza un determinado valor, el acople entre ambas variables se hace más estricto (Δgs disminuye y se mantiene controlada). Luego, en un intento por explicar qué variables ambientales eran las que afectaban a Δgs, se halló que la variación de la concentración parcial de vapor en la hoja Δ(εL(T)/Pa) está, en algunos casos, muy correlacionada con Δgs, pero muy poco correlacionada en otros, debido a que, puede existir...
un defasaje en las marchas diarias de ambas variables (la variación de la condición ambiental antecede a la variable fisiológica). Estas aparentes inconsistencias se pueden deber a que en distintas variedades, los factores hidráulicos y hormonales que determinan el ajuste estomático tienen un peso distinto (Damour et al., 2010). Este estudio se focalizó solamente en la parte hidráulica del fenómeno de la cavítación, y no tuvo en cuenta la parte químico-hormonal del mismo, por lo cual no se pudo avanzar en este aspecto.

Con respecto al modelo generado para explicar el mecanismo de limitación del embolismo, puede criticarse que en él, una de las variables de ingreso, \(k_L \), es una \(k_L \) afectada por el nivel de embolismo, y por lo tanto, aparentemente incluye un error. Pero, como el modelo mide el fenómeno a medida que \(k_L \) crece, y crece a pesar de la porción de conductividad hidráulica que le resta el embolismo, probablemente por la acción de las acuaporinas en la raíz (Vandeleur et al., 2009), pueden entonces tomarse como válidas las conclusiones obtenidas a partir del mismo. En realidad el modelo funciona calculando el embolismo en un tiempo \(t \) apartir del embolismo \(t-1 \) (valor que está integrado en la medida de la variable de entrada \(k_L \)). Esto es correcto en mecanismos con retroalimentación negativa como es probable que sea el de control de la embolia (Salleo et al., 2000). Incluso, puede ser que este embolismo, que afecta a la \(k_L \) sea, en parte, el causante del acople más estricto entre \(g_s \) y \(k_L \), que se da a media mañana. Nardini y Salleo, (2000) explican que el embolismo no puede evitarse del todo y que éste puede ser la señal que el estoma necesita para cerrarse. Esta misma hipótesis podría probarse en el futuro si se pudiera separar \(k_L \) experimentalmente en sus componentes (\(k_L^{-1} = k_{raíz}^{-1} k_{tallo}^{-1} \)) y generar un modelo más completo. Como en este estudio no se pudieron medir la \(k_{raíz} \) y el efecto de las acuaporinas, no pudo discriminarse el embolismo de \(k_L \) en el modelo.

Con relación a \(k_L \) se pudo notar que la forma que la curva diaria de esta conductancia manifestó a lo largo del día, y que tuvo su máximo 2 h después de la estabilización del embolismo, copia la forma de la curva de la \(k_L \) observada en raíces en vid, por otros autores (Vandeleur et al., 2009). Esta curva de \(k_L \) de raíz depende del funcionamiento de las acuaporinas; que permiten la entrada del agua a la raíz, por vía transcelular. En este sentido, una planta bien regada y una planta estresada pueden tener formas similares de las curvas diarias de \(k_L \) (y de \(g_s \)), independientemente del estado hídrico y de los eventos de cavítación.

Pero, las plantas en capacidad de campo alcanzan valores de conductividad, a lo largo del día, más altos que las plantas estresadas. Las implicancias en el control de la cavítación, como se observó, tienen que ver con los valores que alcance \(\Delta g_s \) y con la vulnerabilidad a cavitar; y no con los de \(k_L \) y \(g_s \) individualmente.

Es de gran importancia destacar que, en la vid, como pudo observarse, el control de la embolia no requirió el cierre de los estomas, por lo que no significó un costo en términos de
asimilación carbónica. Es decir que la planta puede seguir fotosintetizando y al mismo tiempo evitar la embolia catastrófica por regulación de g, con respecto a kL. En este sentido, y en nuestro caso, estaríamos frente a una especie que puede requerir cantidades de agua bastante bajas y seguir produciendo en cantidad y calidad, sin riesgos de embolia graves.
6 Conclusiones

-En la vid existe un mecanismo de control de la cavitación xilemática basado en la interacción de la conductancia estomática (g_s) y la conductancia hidráulica específica de la planta (k_L).

- Esto ocurre así porque g_s y k_L están fuertemente correlacionadas.

-Cuando la diferencia entre estas conductancias (Δg_s) disminuye a media mañana, el embolismo se detiene. Esto es cierto para distintas variedades y para plantas que viven sin restricción hídrica o en plantas bajo déficit hídrico moderado.

- El mecanismo de control indicado, en la vid, no requiere del cierre estomático para limitar la embolia, por lo que no limita la asimilación.

- Debido a la forma de la curva de vulnerabilidad a cavitar (i.e., sin plateau inicial) esta especie, comparada con otras leñosas, sufre niveles altos de cavitación diaria (alrededor del 20%) antes de que el mecanismo de control de la embolia actúe.

- Estos altos niveles de cavitación requieren mecanismos de reparación xilemática eficientes.
7 Principales aportes del trabajo:

Este estudio aporta un avance sobre el conocimiento del funcionamiento hidráulico de la vid, en lo que respecta al mecanismo de control estomático de la cavitación.

Mediante un modelo mecanístico que se construyó teniendo en cuenta los flujos de agua y vapor, las kₗ y gₛ, y la vulnerabilidad del xilema a cavitar; se probó que gₛ no es la única variable responsable de frenar la embolia. Se determinó que gₛ y kₗ están íntimamente asociadas y que este acople entre ambas conductancias es lo que frena la embolia.

Se determinó que la vid es una especie que cavita mucho más que otras especies leñosas, lo que es consistente con su hábito de liana en que se privilegia la eficiencia hidráulica con detrimento de la seguridad xilemática. Pero esto no actúa en detrimento de su productividad, ya que no requiere de un cierre estricto de los estomas para frenar la cavitación, y por lo tanto puede continuar fotosintetizando mientras controla el nivel de embolia alcanzada; además de tener una eficiente función de reparación diaria del xilema embolizado.

También se descubrió que bajo niveles moderados de déficit hídrico la vulnerabilidad xilemática no aumenta con respecto a las plantas que no sufren déficit, sin importar de qué variedad se trate, lo que puede ser una importante consideración a tener en cuenta cuando se diseñan métodos de riego deficitario.
8 Futuras líneas de investigación que emergen de este trabajo:

- Sería importante profundizar en el modelo mecanístico para mejorararlo, separando los componentes de k_L (e.g., $k_{raíz}$, $k_{tallomax}$, $k_{talloembolizado}$).
- En vista de los resultados obtenidos, la reparación del xilema cavitado parece ser una función necesaria en la vid, ya que, diariamente, esta especie alcanza niveles altos de embolia. Por esto, sería importante medir la reparación del xilema embolizado y profundizar en el mecanismo implicado.
- Sería interesante estudiar la cavitación y su posible control pero bajo niveles de estrés hídrico más severos, para probar si los mecanismos descubiertos son efectivos bajo situaciones más extremas.
- También, corroborar las predicciones del modelo por medios sónicos.
- Por último, sería de gran interés agronómico, estudiar los ciclos cavitación-reparación y sus implicancias sobre el desempeño del cultivo bajo diferentes situaciones de déficit hídrico.
9 Bibliografía:

correlation with other leaf physiological traits”. *Plant Physiology*, 132: 2166–2173.

http://books.google.com.ar/books?hl=es&lr=&id=iHR7Ui4RT3QC&oi=fnd&pg=PA1&ots=1VN_3i6Uy0&sig=9KuDakC3ACVTPgulw55H1VluByf#v=onepage&q&f=false

10 Anexos

10.1 Anexo I: Ajustes de las Curvas de cavitación de cada planta.

Para plantas en las que fue posible medir 2 curvas de cavitación, por contar con 2 brotes, se tienen 2 curvas de cavitación.
Syrah 54A T

\[Y = A \exp(B \exp(C X)) \]

\[N = 55 \]

Legend:
- \(A = 0.2990 \times 10^0 \)
- \(B = 0.4231 \times 10^0 \)
- \(C = 0.3006 \times 10^1 \)

Syrah 54B T

\[Y = A \exp(B \exp(C X)) \]

\[N = 55 \]

Legend:
- \(A = 0.1595 \times 10^0 \)
- \(B = 0.4719 \times 10^0 \)
- \(C = 0.4719 \times 10^0 \)
10.2 Anexo II: 24 casos de Emb% vs potencial hídrico foliar (Ψₜ):

Chardonnay 4 T

Chardonnay 5 T

Chardonnay 6 T

Chardonnay 9 DH

Chardonnay 10 DH

Chardonnay 12 DH

Grenache 16 T

Grenache 19 T
Anexo III: Relaciones entre Emb%, gₜ y kₜ.

Chardonnay 4 T

Chardonnay 5 T

Chardonnay 6 T

Chardonnay 12 DH
Grenache 24 T

Grenache 23 DH

Grenache 22 DH

Grenache 21 DH
Malbec 35 DH

Malbec 33 DH

Syrah 48 T

Syrah 50 T
10.4 Anexo IV: Relaciones entre E vs. k_L y entre E/k_L vs. Emb%:
Malbec 35 DH

Malbec 38 DH

Syrah 48 T

Syrah 50 T

Syrah 51 T

Syrah 52 DH

Syrah 53 DH

Syrah 54 DH
10.5 Anexo V: Relación entre Δg_s y Emb%.